CONVEX POLYTOPES AND RETRACTIONS OF ABELIAN GROUPS

WALTER S. SIZER

Introduction. For any group G , let $F(G)$ denote the semigroup of finite non-empty subsets of G. A semigroup homomorphism $\sigma: F(G) \to G$ satisfying $\sigma({g}) = g$ for all g in G is called a *retraction* of G. The notion of a group admitting a retraction generalizes the notion of a latticeordered group because in any lattice-ordered group the mapping $A \rightarrow \wedge A$ is a retraction (cf., [1]). This example of a retraction induced by a lattice order has the property that the effect of the mapping on *F(G)* is determined uniquely by its effect on two element subsets. This is not so for all retractions, and [1, example 6.1], gives an instance where two distinct retractions agree on all two element subsets. The question of whether distinct retractions can agree on sets of cardinality less than or equal to *n* for arbitrary *n* is dealt with in this paper.

Also, in looking at a retraction σ on a group G, the notion which corresponds to that of an l-subgroup is the notion of a σ -subgroup—a subgroup *H* of *G* such that σ restricted to $F(G)$ is a retraction of *H*. In this paper we also deal with the question of whether a subgroup *H of G* with the property that all sets in $F(H)$ of cardinality less than *n* get mapped by σ to *H* must necessarily be a σ -subgroup.

Our approach considers only retractions of divisible abelian groups and builds on observations made in [3] and **[4].** In the process of studying retractions we get a correspondence between retractions and homomorphisms from a semigroup of convex polytopes in $Qⁿ$ to $Qⁿ$, so some of our results are essentially geometric in nature.

I. Retractions and convex polytopes. Throughout, *G* will be a torsion free divisible abelian group, hence a rational vector speace. For convenience we take *G* to be of finite rank.

If σ is any retraction of G, and A, B, C are sets satisfying $A + C =$ $B + C$, then $\sigma(A) = \sigma(B)$. Hence for A, B in $F(G)$, we define $A \sim B$ if there is a C in $F(G)$ with $A + C = B + C$. The following proposition is then easy to verify.

Received by the editors on January 13, 1981, and in revised form on May 17, 1982. Copyright © 1983 Rocky Mountain Mathematics Consortium