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A ^/-EXTENSION OF BAILEY'S BILINEAR 
GENERATING FUNCTION FOR THE JACOBI POLYNOMIALS 

H.M. SRIVASTAVA 

ABSTRACT. This note presents a rather simple proof of an interest
ing ^/-extension of Bailey's bilinear generating function for the 
classical Jacobi polynomials. The proof given here uses only such 
elementary results as the ^-analogues of Euler's transformation, 
Vandermonde's summation theorem, and binomial expansion. 

1. Introduction. Several interesting proofs are given in the literature 
for Bailey's bilinear generating function for the classical Jacobi poly
nomials [1, p. 9, Eq. (2.1)]. One of the recent proofs is given by 
Stanton [3]; it uses the orthogonality property of Jacobi polynomials and 
a known quadratic transformation for a well-poised hypergeometric 
3F2 series. Indeed, as remarked by Stanton [3, p. 399], this technique 
applies mutatis mutandis to yield a ^-extension of Bailey's result. The ob
ject of the present note is to give a rather simple proof of the ^-extension, 
using only such elementary results as the ^-analogues of Euler's trans
formation, Vandermonde's summation theorem, and binomial expansion. 
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2. Definitions and preliminaries. Put 

I , if AÎ = 0, 

(1 - X){\ - Àq)...(\ - Xqnl\ V / i e { l , 2 , 3 , . . . ] , 

and let p+i@p denote the standard ^-hypergeometric series with p + 1 
numerator and p denominator parameters. Then, in terms of the little 
^-Jacobi polynomials defined by 
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