## ASYMPTOTIC BEHAVIOUR OF A REACTION-DIFFUSION EQUATION IN HIGHER SPACE DIMENSIONS

## CHRISTOPHER K.R.T. JONES

ABSTRACT. The reaction-diffusion equation considered has a travelling wave solution in one space dimension for which strong stability results have been proved by Fife and McLeod [3]. In this paper it is proved that a certain class of solutions of this equation, in higher space dimensions, approach this one-dimensional travelling wave when followed out along any ray.

1. Introduction. In this paper I extend a theorem of Jones [4]. The result concerns the reaction-diffusion equation:

$$(1.1) u_t = \Delta u + f(u),$$

where  $u \in \mathbb{R}$ ,  $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$  and  $\Delta = \partial^2/\partial x_1^2 + \cdots + \partial^2/\partial x_n^2$ . Here  $f: \mathbb{R} \to \mathbb{R}$  is assumed to be smooth and to have the cubic-like form depicted in Fig. 1.



Fig. 1

Specifically it has three zeroes 0,  $\alpha$  and 1, with f'(0) < 0, f'(1) < 0 and  $\int_0^1 f(u) du > 0$ . An initial value problem is naturally associated with (1.1):

The research is partially supported by an NSERC operating grant No. 67-9215. Received by the editors on February 1, 1982.