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NORMAL FIBRATIONS AND THE EXISTENCE OF 
TUBULAR NEIGHBORHOODS 

W. O. NOWELL, JR. 

ABSTRACT. TO each pair (M, N) of Hilbert cube manifolds for 
which N is locally flat of codimension n in M, there corresponds a 
normal Hurewicz fibration over AT whose fibers have the homotopy 
type of 5W_1. It is shown that AT has a closed tubular neighborhood in 
M if and only if the normal fibration is fiber homotopically equiva
lent to some abstract Sn~l — bundle over N. 

1. Introduction. A closed subspace TV of a manifold M is locally flat 
(with codimension n) if for each x0e N there is an open neighborhood U 
of x0 in N and an open embedding h: U x Rw -> M such that h(x, 0) = x 
for all x e U9 where Rw is «-dimensional Euclidean space. The pair (M, N) 
is then called a locally flat pair. 

It is of particular interest to determine, if (M, N) is a locally flat pair, 
whether N has a tubular neighborhood in M. A tubular neighborhood is a 
neighborhood E of N in M for which there exists a retraction p: E —• N 
such that (E, p, N) is a locally trivial fiber bundle with 0-section N and 
fiber F which is either Rw or the Euclidean «-ball Bn. If E is open in M and 
F = RM, E is called an open tube; likewise, if E is closed and F = Bn, E is 
called a closed tube. The boundary dE of a closed tube is the combinatorial 
boundary of E, which is an Sw-1-bundle. A locally flat pair of topological 
(as opposed to differentiate) manifolds need not admit a tubular neigh
borhood (see, for example, [13]). 

The subject of this paper is the tubular neighborhood question for Hil
bert cube manifolds. A Q-manifold is a separable metric space with a basis 
consisting of elements homeomorphic to open subsets of the Hilbert cube 
Q. Equivalently, the basis elements may be required to be homeomorphic 
t o g x [0, 1) [1], a fact which will be used repeatedly. Henceforth, (M, N) 
will always be used to mean a locally flat g-manifold pair with codimen
sion n. 

It is shown in [11] that if (M, N) has codimension 2, then N always has 
a closed (and thus also an open) tubular neighborhood, a result analogous 
to the finite dimensional result of Kirby and Siebenmann [10]. (For a 
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