BOUNDARY BEHAVIOR OF SPACES OF ANALYTIC FUNCTIONS

GEORGE BRAUER*

0. Introduction. We define for $p \ge 1, b > 0$, the space $M_{p,b}$ of function $f(z) = \sum_{n=0}^{\infty} \hat{f}(n) z^n$, analytic in the unit disc D, such that

$$\|f\|_{p,b} = \limsup_{r \to 1} (1-r)^{b} \left[\int_{0}^{2\pi} |f(z)|^{p} d\theta / 2\pi \right]^{1/p} < \infty,$$

$$z = r \exp i\theta.$$

Two functions f and g are identified in $M_{p,b}$ whenever $||f - g||_{p,b} = 0$. We also define for a > 0, the space $M_{\infty,a}$ of functions f(z), analytic in D such that

$$||f||_{\infty,a} = \limsup_{r \to 1} (1 - r)^a \max_{|z|=r} |f(z)| < \infty;$$

two functions f and g in $M_{\infty,a}$ are identified whenever $||f - g||_{\infty,a} = 0$, that is $f(r \exp i\theta) - g(r \exp i\theta) = o(1 - r)^a$, uniformly in θ .

For b = 0 a space $M_{p,b}$ reduces to a Hardy space H^{p} ; for a description of the Hardy space see [1, 6]. If f is in a Hardy space H^{p} , then $||f||_{p,b} = 0$ for all b > 0.

In addition to the obvious relations $M_{p,b} \subseteq M_{q,b}$ for $p \ge q$ we also have

(1)
$$M_{p, a-1/p} \subseteq M_{q, a-1/q}$$

for $1 \le p \le q < \infty$, a > 1/p; moreover there exist constants C, C' such that

(2)
$$\|f\|_{\infty,a} \leq C \|f\|_{p,a-1/p} \\ \|f\|_{q,a-1/q} \leq C' \|f\|_{p,a-1/p}$$

(cf. [1, p. 84]).

The relations (2) shows that if a function f is in a space $M_{p,a-1/p}$, $p \ge 1$, a > 1/p, then $(1 - |z|)^a f(z)$ must remain bounded as z approaches a boundary point of D. In this note we will obtain restrictions on the values which $(1 - |z|)^a f(z)$ approaches as z approaches the boundary of D for functions f in a space $M_{p,a-1/p}$. We will also study topological properties of the $M_{p,a}$ spaces.

Received by the editors on March 6, 1979, and in revised form on February 12, 1980. *Research supported by NSF grant NSFG 7686.

Copyright © 1981 Rocky Mountain Mathematics Consortium