INEQUALITIES FOR THE GENERALIZED TRANSFINITE DIAMETER

BURNETT MEYER

ABSTRACT. Let E be a compact subset of a metric space X and f a Lipschitzian function on X. It is shown that $d(f(E)) \leq Md(E)$, where d is the generalized transfinite diameter of Hille [2, 3] and M is the Lipschitz constant. Also, upper and lower bounds are obtained for the transfinite diameter of the union E of two "widely separated" compact sets, E_1 and E_2 , in terms of the diameters of E, E_1 , and E_2 , the transfinite diameters of E_1 and E_2 , and the distance between E_1 and E_2 .

1. **Preliminaries.** The transfinite diameter in the complex plane was first introduced by Fekete in 1923. Pólya and Szegö extended the concept to three – dimensional space and showed that the transfinite diameter coincides with the capacity. Further generalizations of this concept were made by them and by Leja. Finally Hille, in two papers [2, 3], summarized and unified the previous generalizations. His papers contain bibliographies of previous work.

The present paper extends, in Theorem 1, a result of the author [6] from the complex plane to a metric space. Also inequalities are obtained for the transfinite diameter of the union of two "widely separated" sets.

2. Averaging processes. Let A be a function whose domain is all finite sequences of positive numbers. A is called an *averaging process* if it satisfies the following four axioms of Kolmogoroff [4]:

(i) A[x₁, x₂, ..., x_n] > 0 for all finite sequence {x_k} of positive numbers;
(ii) A is a continuous, symmetric function of its arguments and is a strictly increasing function of each of them;

(iii) A[x, x, ..., x] = x; and

(iv) $A[x_1, x_2, \ldots, x_k, x_{k+1}, \ldots, x_n] = A[y, y, \ldots, y, x_{k+1}, \ldots, x_n]$ if $y = A[x_1, x_2, \ldots, x_k]$.

In addition, we will assume a fifth axiom:

(v) $A[kx_1, ..., kx_n] = kA[x_1, ..., x_n]$ for any k > 0.

We shall sometimes use the notation $A_{1 \le i \le n} x_i$ for $A[x_1, \ldots, x_n]$.

It can be proved [7] that an averaging process which satisfies (v) is of

Received by the editors on October 6, 1979.

AMS (MOS) subject classification (1970), Primary 31C15.