SOME TOTALLY REAL SUBMANIFOLDS IN A QUATERNION PROJECTIVE SPACE

CHORNG SHI HOUH

0. Introduction. Let HP mbe the (real) 4m-dimensional quaternion projective space. On totally real submanifolds in HP^m , [1] has established some fundamental concepts and formulas. In this paper we employ some techniques developed in [2] and [4] and prove the following theorem.

THEOREM. Let HP^m be the (real) 4m-dimensional quaternion projective space of constant quaternion sectional curvature c > 0. Let N be an n-dimensional compact totally real minimal submanifold of HP^m . If the sectional curvature γ of N satisfies $\gamma \ge (n - 1)c/4(2n - 1)$, then either N is totally geodesic in HP^m or n = 2, $m \ge 4$ and N is the Veronese surface in HP^m with positive constant curvature c/12.

1. **Preliminaries.** Let HP^m be a quaternion projective space with real dimension 4m. On HP^m there exists a 3-dimensional vector space V of tensors of type (1.1) with local basis of almost Hermitian structure I, J, K such that

(a)
$$IJ = -JI = K$$
, $JK = -KJ = I$, $KI = -IK = J$,
 $I^2 = J^2 = K^2 = -1$;
(b) $\tilde{\nabla}_x I = r(x)J - q(x)K$, $\tilde{\nabla}_x J = -r(x)I + p(x)K$,
 $\tilde{\nabla}_x K = q(x)I - p(x)J$

for some functions p(x), q(x), r(x) on HP^m , where $\tilde{\nabla}$ is the connection on HP^m .

Let X be a unit vector on HP^m . Then X, IX, JX and KX form an orthonormal frame. Let Q(X) be the 4 plane spanned by them. For X, Y on HP^m , if Q(X) and Q(Y) are orthogonal, the plane $\pi(X, Y)$ spanned by X and Y is called a *totally real plane*. Any 2-plane in some Q(X) is called a *quaternion plane*. The sectional curvature of a quaternion plane π is called the *quaternion sectional curvature* of π . The quaternion sectional curvature of HP^m is a constant c > 0. HP^m is thus called a *quaternion-space-form*.

Let g be the Riemann metric on HP^m . Then the curvature tensor \tilde{R} of HP^m is given by [3].

Received by the editors on May 26, 1978

Copyright © 1980 Rocky Mountain Mahtematics Consortium