CAUCHY TRANSFORMS OF MEASURES, AND A CHARACTERIZATION OF SMOOTH PEAK INTERPOLATION SETS FOR THE BALL ALGEBRA

ALEXANDER NAGEL*

For $z = (z_1, \dots, z_n)$ and $w = (w_1, \dots, w_n) \in \mathbb{C}^n$, let $\langle z, w \rangle = \sum_{j=1}^n z_j \overline{u}_j$, and let $|z| = \langle z, z \rangle^{1/2}$. Let $B_n = \{z \in \mathbb{C}^n | |z| < 1\}$ denote the unit ball in \mathbb{C}^n , and let $\partial B_n = \{z \in \mathbb{C}^n | |z| = 1\}$ denote its boundary. If F(z) is holomorphic on B_n , we say that F belongs to $H^p(B_n)$, 0 , if

$$\sup_{r<1} \quad \int_{\partial B_n} |F(r\zeta)|^p \, d\sigma(\zeta) < \infty$$

where $d\sigma$ is rotation invariant Lebesgue measure on ∂B_n . We say that $F \in H^{\infty}(B_n)$ if $\sup_{z \in B_n} |F(z)| < \infty$. If $F \in H^p(B_n)$ for $0 , then F has radial limits <math>F^*(\zeta)$ almost everywhere on ∂B_n with respect to $d\sigma$. Moreover, if $1 \leq p < \infty$, $F(r\zeta)$ converges in L^p to $F^*(\zeta)$. (For a discussion of H^p theory in B_n , see for example Stein [6] or Stout [7].)

Let $d\mu$ be a finite Borel measure on ∂B_n . We shall denote by $C(\mu)$ the Cauchy transform of $d\mu$ which is given by

$$C(\mu)(z) = \int_{\partial B_n} [1 - \langle z, \zeta \rangle]^{-n} d\mu(\zeta).$$

 $C(\mu)(z)$ is holomorphic on B_n , but in general it need not belong to $H^1(B_n)$, for example if $d\mu$ is a point mass.

The object of this paper is twofold. First we study $C(\mu)$ when $d\mu$ is "Lebesgue measure" on a smooth curve $\gamma \subset \partial B_n$. We show that if the tangent to the curve γ does not lie in the maximal complex subspace of the real tangent space to ∂B_n at each point, then $C(\mu)(z)$ does belong to $H^1(B_n)$, and in fact has better behavior depending on the smoothness of γ . (Note that when n > 1, it follows that $C(\mu)$ may belong to $H^1(B_n)$ even if $d\mu$ is singular with respect to the surface measure $d\sigma$ on ∂B_n .) Precise statements are given in Theorem 1.

A second object of this paper is to apply Theorem 1 to obtain a necessary condition for a compact set $K \subset \partial B_n$ to be a peak interpolation set for the ball algebra $A(B_n)$ of functions continuous on \overline{B}_n and holomorphic on B_n . (For the definition of peak interpolation set, see section

Received by the editors on February 8, 1977, and in revised form on May 4, 1977.

^{*}Research supported in part by an NSF grant at the University of Wisconsin.

Copyright © 1979 Rocky Mountain Mathematical Consortium