DIFFERENTIABLE POINTS OF THE GENERALIZED CANTOR FUNCTION

THOMAS P. DENCE

ABSTRACT. The generalized Cantor function Θ_{γ} has a derivative equal to $1/(1 - \gamma)$ at almost every point in the set C_{γ} . This was established by Darst [1] who then posed the problem of characterizing those points which are not differentiable. The differentiability of points in C_{γ} is determined by the spacing of the 0's and 2's in a ternary-like expansion. Points that are interval endpoints have one-sided derivatives from both sides.

1. Introduction. To describe a generalized Cantor set, denoted by C_{γ} , and the corresponding Cantor function Θ_{γ} , first choose a number γ satisfying $0 < \gamma < 1$. The usual Cantor set is obtained when $\gamma = 1$. The set C_{ν} is obtained in the same manner as the standard Cantor set by deleting a sequence $\{(a_i, b_i)\}_{i=1}^{\infty}$ of pairwise disjoint segments from the interior of the unit interval. In general, the k-th step consists of removing an open interval of length $\gamma/3^k$ from the middle of each of the 2^{k-1} closed intervals, thereby leaving 2^k closed intervals of equal length. This length is in fact equal to $(1 - \gamma_k)/2^k$, where $\gamma_k = \gamma [1 - \gamma_k)/2^k$. $(2/3)^k$]. The process continues, and C_{ν} is defined to be the set of points in [0, 1] which fail to be removed. The measure of C_{γ} is positive and equals $1 - \gamma$. The corresponding Cantor function is defined analogously to the standard Cantor function. The function Θ_{γ} is a nonnegative, nondecreasing continuous function. In addition, Darst established that $\Theta_{\gamma}'(x) = 1/(1 - \gamma)$ for almost all x in C_{γ} . Characterizing the set of points in [0, 1] at which Θ_{γ} is not differentiable is the problem this paper concerns itself with.

2. Derivatives at Endpoints. In establishing $\Theta_{\gamma}'(x) = 1/(1 - \gamma)$ for almost all x in C_{γ} , Darst showed that

$$\left| \begin{array}{c} \displaystyle \Theta_{\gamma}(y) \, - \, \Theta_{\gamma}(x) \\ \displaystyle y \, - \, x \end{array} \right| \ \leq rac{1}{1 \, - \, \gamma}$$

for all x, y in [0, 1] with $x \neq y$. Our first result is that all right (left) hand interval endpoints have derivatives from the right (left) which equal $1/(1 - \gamma)$. A geometric approach will be used and a sketch of the proof given. To proceed, let x be an arbitrary right endpoint, where the length of the removed interval is $\gamma/3^k$ and k is some positive integer. For each integer n > k, let $J_n = (u_n, v_n)$ be the removed in-

Received by the editors on June 25, 1975, and in revised form on March 9, 1976.

Copyright © 1979 Rocky Mountain Mathematical Consortium