SWEEPING MEASURES FROM THE POLYDISC TO THE TORUS

HOWARD LEWIS PENN⁽¹⁾

Let $A(\Delta^n)$ be the polydisc algebra consisting of functions continuous on the closed polydisc, Δ^n , and analytic on the interior. The distinguished boundary of the polydisc is the *n*-dimensional torus, T^n . This is a compact connected Abelian group. Its dual is Z^n , the cross product of *n* copies of the integers. Let Z^{n}_+ be the set of all $\alpha \in Z^n$ with $\alpha_i \in Z_+$ for $1 \leq i \leq n$. Let $A(T^n)$ be the algebra of continuous functions on T^n whose Fourier series vanish off Z^{n}_+ . Theorem 2.2.1 in *Function Theory in Polydiscs* by Walter Rudin [4] shows that $A(\Delta^n)$ and $A(T^n)$ are in one-to-one correspondence. The element in $A(T^n)$ corresponding to $f \in A(\Delta^n)$ is denoted by f^* .

Let μ be a measure on Δ^n . The measure, μ , can be considered as a linear functional on $A(\Delta^n)$ and hence on $A(T^n)$. The linear functional can be extended to a linear functional on $C(T^n)$. This linear functional gives a measure, σ , defined on T^n such that

$$\int_{\Delta^n} f d\,\boldsymbol{\mu} = \int_{T^n} f^* \, d\boldsymbol{\sigma}$$

for every $f \in A(\Delta^n)$. The theorem below gives a construction method of finding the measure σ . In one variable a similar construction was given by Rubel and Shields [3].

THEOREM. Let μ be a measure defined on Δ^n then a measure σ can be constructed on T^n such that $\int_{\Delta^n} f d\mu = \int_{T^n} f^* d\sigma$ for all $f \in A(\Delta^n)$.

PROOF. Let μ be a measure on Δ^n . Then $\mu = \mu_T + \mu_0 + \mu_I$, where μ_T is the restriction of μ to T^n , μ_0 is the restriction of μ to the open polydisc, U^n and μ_I is the restriction of μ to the indistinguished boundary.

Consider first μ_0^{\bullet} . Look at

$$\int_{U^n} f(z) d\mu_0(z)$$

= $\int_{U^n} \int_{T^n} f^*(t) P(r, \theta - t) dm(t) d\mu_0(r, \theta)$

Received by the editors on September 23, 1975.

⁽¹⁾ The work in this paper was completed as part of the author's doctoral thesis at the University of Michigan.