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1. Introduction. If G is a compact simple Lie group with maximal 
abelian subgroup T and normalizer N(T), then W = N(T)IT is a finite 
group called the Weyl group of G. If ^ is the Lie algebra of G with 
Ü the Cartan subalgebra corresponding to T, then the adjoint action of 
G on g has the property that U = {JC E ^ : t • x = x for all t G T}. 
Thus Ö is naturally a W-module and it is well-known that W acts on 
C7 as a group generated by reflections. A generalization of this situa­
tion is the following. Let M be a complex G-module and let M0 = 
{x G M : t • x = x for all t E: T}, the zero-weight space of M. Then 
M0 is naturally a W-module. It is the purpose of this paper to char­
acterize the W-module structure of M0 in case G = SU(V) (where V 
is n-dimensional unitary space) and M is a finite dimensional simple 
G-module. 

REMARK. The structure of M0 as a W-module is closely related to the 
structure of ff, the graded G-module of G-harmonic polynomials over 
<§. For example, the multiplicity of M in H is exactly k = dim(M0). 
Furthermore, if ml9 ' • 'ymk are the homogeneous degrees of H in 
which M occurs (the generalized exponents of M), then the eigenvalues 
in M0 of a Coxeter-Killing element in W are just exp(2jrt/mj) (j = 
1, • • -,fc). See Kostant's paper [3] for a definition of the G-harmonic 
polynomials and more details. 

Our results for G = SU(V) depend heavily on the classical cor­
respondence between the irreducible representations of SUÇV) and 
those of the symmetric groups Sm as m ranges over all positive in­
tegers. This correspondence is due to the fact that the linear span of 
the action of Sm on ® m V is the full centralizer of the action of SU(V) 
on ® m V. In § 2, we will summarize this correspondence using a more 
general result about centralizing group representations. In § 3 we will 
prove a sharpened version of this result for permutation representations 
of finite groups. Finally, in § 4 we will obtain a formula for the char­
acter of W on M0 related to Littlewood's plethysm of S-functions. 

Received by the editors on January 3, 1975. 
Copyright © 1976 Rocky Mountain Mathematics Consortium 

449 


