LINEAR COMBINATIONS OF CONVEX MAPPINGS

H. SILVERMAN

1. Introduction. Let S denote the class of functions of the form $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$ which are analytic and univalent in the unit disc U: |z| < 1. A function $f \in S$ is said to be *starlike of order* α , $(0 \le \alpha < 1)$, denoted $f \in S^*(\alpha)$, if

$$\operatorname{Re}\left\{z\frac{f'(z)}{f(z)}\right\} > \alpha , \qquad (z \in U)$$

and is said to be convex of order α , denoted $f \in K(\alpha)$, if

Re
$$\left\{ 1+z\frac{f''(z)}{f'(z)} \right\} > \alpha$$
, $(z \in U)$.

It is well known that $f \in K(\alpha)$ if and only if $zf' \in S^*(\alpha)$.

In [1, p. 38], the following question is considered: Suppose $f, g \in K(0)$. For 0 < t < 1, set

(1)
$$h = tf + (1 - t)g.$$

Is h starlike and univalent?

MacGregor answered this question in the negative. In [5], he showed that h need not be univalent in any disc $|z| < r, r > 1/\sqrt{2}$.

In this note, we investigate functions of the form (1) when $f, g \in K(\alpha)$. For $0 < \alpha < 1/2$, a radius of univalence is found. For $\alpha = 1/2$, we show that h is univalent and close-to-convex.

2. Radius of univalence. The development of this section will parallel that of MacGregor in [5], with the class K(0) replaced by $K(\alpha)$. For $\underline{f(z)} \in K(\alpha)$, consider the related function g(z) defined by $g(z) = \epsilon \ \overline{f(\epsilon \overline{z})}, |\epsilon| = 1$. Note that

(2)
$$g'(z) = \overline{f'(\epsilon \overline{z})}, g''(z) = \overline{\epsilon} f''(\epsilon \overline{z}).$$

From (2), we obtain

$$1 + z \frac{g''(z)}{g'(z)} = 1 + z\overline{\epsilon} \frac{\overline{f'(\epsilon \overline{z})}}{\overline{f'(\epsilon \overline{z})}}$$

Copyright © 1975 Rocky Mountain Mathematics Consortium

Received by the Editors March 10, 1973, and in revised form July 9, 1973.