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ON A CRANK-NICOLSON SCHEME FOR 
NONLINEAR PARABOLIC EQUATIONS 

A. REYNOLDS 

1. Introduction. In this paper we consider a Crank-Nicolson type 
scheme for the problem: 

(1.1) ut = f(t, x, u, ux, uxx) in (0, T\ X {a, b) 

(1.2) u(0, x) = <p(x), u(t, a) = <p0(t), and u(t9 b) = <px(t) 

where <p(a) = <Po(0) and <p(b) = <pi(0). 
In [11], the author was able to obtain a convergence theorem for 

a set of finite difference analogues of (1.1), (1.2) with (0, T] X (a, b) 
replaced by [0, T] X (a, b). For the Crank-Nicolson type scheme in
cluded among the methods in [11] a 0(àt + h2) convergence result 
was obtained. No method was given for solving the nonlinear system 
of difference equations. 

For the Crank-Nicolson type scheme presented here, three improve
ments are possible. We obtain 0((at)2 + h2) convergence, we give 
a convergent iterative scheme for solving the nonlinear system of 
difference equations, and we obtain our results without assuming 
that the solution of (1.1) has continuous derivatives at t = 0. 

Consideration of this iterative procedure yields an existence and 
uniqueness theorem for the solution of the nonlinear system of differ
ence equations. This existence and uniqueness theorem is a slight 
improvement over the analogous result in [11], in that we obtain it 
by requiring that f(t, x, z, p, r) satisfies certain Lipschitz conditions 
with respect to z9 p, and r whereas in [11], we assumed / had 
continuous partial derivatives with respect to z, p, and r. 

2. Notation and Preliminary Results. Let 

(2.1) h= ^ - f a n d At= Tim 
n •+• 1 

where n and m are positive integers. Also let x{ = a + ih for i = 0 ,1 , 
• • -, n + 1 and tj = j Attorj = 0 ,1 , • • -, m. 

For the remainder of the paper, we will suppose 2.1 defines a mesh 
on [0, T] X [a, b], and if v(t, x) is any function defined on this mesh 
we denote v(tj, xì) by vitj. For any such mesh function, we let 
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