THE AUTOMORPHISM GROUP OF AN EXTRASPECIAL p-GROUP

DAVID L. WINTER

1. Let p be a prime. The finite p-group P is called special if either (i) P is elementary abelian or (ii) the center, commutator subgroup and Frattini subgroup of P all coincide and are elementary abelian. A nonabelian special p-group whose center has order p is called an extraspecial p-group. It is possible to give a uniform treatment of the subject of automorphisms for all the possible isomorphism types of extraspecial p-groups and so some cases that are more or less known are included here. The result when p is odd and P has exponent p^2 leads to an interesting subgroup of the symplectic group $Sp\left(2n, q\right)$, q a power of p, $n > 1$. This subgroup is the semidirect product of $Sp\left(2n - 2, q\right)$ and a normal special p-group of order q^{2n-1} whose center has order q.

Theorem 1. Let p be a prime and let P be an extraspecial p-group of order p^{2n+1}. Let I be the group of inner automorphisms and let H be the normal subgroup of $Aut\ P$ consisting of all elements of $Aut\ P$ which act trivially on $Z(P)$. Then $Aut\ P = \langle \theta \rangle H$ where θ has order $p - 1$, $H \cap \langle \theta \rangle = \langle 1 \rangle$ and H/I is isomorphic to a subgroup of $Sp\left(2n, p\right)$. Furthermore,

(a) If p is odd and P has exponent p, $H/I \cong Sp\left(2n, p\right)$ of order $p^n \prod_{i=1}^{n}(p^{2i} - 1)$.

(b) If p is odd and P has exponent p^2, H/I is the semidirect product of $Sp\left(2n - 2, p\right)$ and a normal extraspecial group of order p^{2n-1}. (If $n = 1$, H/I has order p.)

(c) If $p = 2$, H/I is isomorphic to the orthogonal group $O_e(2n, 2)$ of order $2^{n(n-1)+1}(2^n - \epsilon)\prod_{i=1}^{n-1}(2^{2i} - 1)$. Here $\epsilon = 1$ if P is isomorphic to the central product of n dihedral groups of order 8 and $\epsilon = -1$ if P is isomorphic to the central product of $n - 1$ dihedral groups of order 8 and a quaternion group.

Corollary 1. Let p be an odd prime and let P be an extraspecial p-group of exponent p^2. There is a nonidentity element of $P/Z(P)$ left fixed by every automorphism of P.

Received by the editors June 16, 1970.

AMS 1970 subject classifications. Primary 20D45; Secondary 20F55, 20D05.

Copyright © 1972 Rocky Mountain Mathematics Consortium