SOME PROBABILISTIC REMARKS ON FERMAT'S LAST THEOREM

P. ERDÖS AND S. ULAM

Let \(a_1 < a_2 < \cdots \) be an infinite sequence of integers satisfying \(a_n = (c + o(1))n^{\alpha} \) for some \(\alpha > 1 \). One can ask: Is it likely that \(a_i + a_j = a_r \) or, more generally, \(a_i + \cdots + a_n = a_r \), has infinitely many solutions. We will formulate this problem precisely and show that if \(\alpha > 3 \) then with probability 1, \(a_i + a_j = a_r \) has only finitely many solutions, but for \(\alpha \leq 3 \), \(a_i + a_j = a_r \) has with probability 1 infinitely many solutions. Several related questions will also be discussed.

Following [1] we define a measure in the space of sequences of integers. Let \(\alpha > 1 \) be any real number. The measure of the set of sequences containing \(n \) has measure \(C_1 n^{1/\alpha - 1} \) and the measure of the set of sequences not containing \(n \) has measure \(1 - C_1 n^{1/\alpha - 1} \). It easily follows from the law of large numbers (see [1]) that for almost all sequences \(A = \{a_1 < a_2 < \cdots \} \) ("almost all" of course, means that we neglect a set of sequences which has measure 0 in our measure) we have

\[
A(x) = (1 + o(1))C_1 \sum_{n=1}^{x} \frac{1}{n^{1/\alpha - 1}} = (1 + o(1))C_1 \alpha x^{1/\alpha}
\]

where \(A(x) = \sum_{a_i < x} 1 \). (1) implies that for almost all sequences \(A \)

\[
a_n = (1 + o(1))(n/c_1\alpha)^{\alpha}.
\]

Now we prove the following

Theorem. Let \(\alpha > 3 \). Then for almost all \(A \)

\[
a_i + a_j = a_r
\]

has only a finite number of solutions. If \(\alpha \leq 3 \), then for almost all \(A \), (3) has infinitely many solutions.

It is well known that \(x^3 + y^3 = z^3 \) has no solutions, thus the sequence \(\{n^3\} \) belongs to the exceptional set of measure 0.

Assume \(\alpha > 3 \). Denote by \(E_\alpha \) the expected number of solutions of \(a_i + a_j = a_r \). We show that \(E_\alpha \) is finite and this will immediately...