THE COMPLEXITY OF FREDHOLM EQUATIONS OF THE SECOND KIND: NOISY INFORMATION ABOUT EVERYTHING

ARTHUR G. WERSCHULZ

Communicated by Ian Sloan

ABSTRACT. We study the complexity of Fredholm problems of the second kind $u - \int_{\Omega} k(\cdot, y)u(y) dy = f$. Previous work on the complexity of this problem has assumed that Ω work on the complexity of this problem has assumed that Ω was the unit cube I^d . In this paper, we allow Ω to be part of the data specifying an instance of the problem, along with k and f. More precisely, we assume that Ω is the diffeomorphic image of the unit d-cube under a C^{r_1} mapping $\rho: I^d \to I^l$. In addition, we assume that $k \in C^{r_2}(I^{2l})$ and $f \in C^{r_3}(I^l)$. Using a change of variables, we can reduce this problem to an integral equation over I^d . Our information about the problem data consists of function evaluations, contaminated by δ-bounded noise. Error is measured by the max norm. We show that the problem is unsolvable if $r_1 = 1$ and $d < l$. Hence we assume that either $r_1 > 2$ or $d = l$ in what follows. We find that the *n*th minimal error is bounded from below by $Θ(n^{-\mu_1} + \delta)$ and from above by $Θ(n^{-\mu_2} + \delta)$, where

$$
\mu_1=\min\left\{\frac{r_1}{d},\frac{r_2}{2d},\frac{r_3}{d}\right\}\quad\text{and}\quad \mu_2=\min\left\{\frac{r_1-1}{d},\frac{r_2}{2d},\frac{r_3}{d}\right\}
$$

.

The upper bound is attained by a noisy modified Galerkin method, which can be efficiently implemented by a two-grid algorithm. We thus find bounds on the ε -complexity of the problem, these bounds depending on the cost $c(\delta)$ of calculating a δ -noisy function value. As an example, if $c(\delta)$ = $δ^{-b}$, we find that the *ε*-complexity is between $(1/ε)^{b+1/μ_1}$ and $(1/\varepsilon)^{b+1/\mu_2}$.

1. Introduction. We are interested in the worst case complexity of solving Fredholm problems of the second kind

(1.1)
$$
u(s) - \int_{\Omega} k(s, t)u(t) dt = f(s) \quad \forall s \in \Omega.
$$

This research was supported in part by the National Science Foundation under Grant CCR-99-87858, as well as by a Fordham Univeristy Faculty Fellowship. Received by the editors on September 16, 2006, and in revised form on March

^{13, 2007.}

DOI:10.1216/JIE-2009-21-1-113 - Copyright ©2009 Rocky Mountain Mathematics Consortium

¹¹³