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STABILIZABILITY OF INTEGRODIFFERENTIAL 
PARABOLIC EQUATIONS 

GIUSEPPE DA PRATO AND ALESSANDRA LUNARDI 

ABSTRACT. We consider the stabilizability problem for 
an abstract parabolic integrodifferential equation. Under suit
able assumptions, we give a necessary and sufficient condition 
for stabilizability, generalizing the well known Hautus condi
tion. Then we apply the abstract result to parabolic integro
differential equations in bounded domains. 

Introduction. We consider a parabolic integrodifferential equation 
in general Banach space X: 

(0.1) u'(t) = Au(t)+ K{t-s)u{s)ds + $f(s), t > 0,u(0) = n0. 
Jo 

Here A : D(A) —• X generates an analytic semigroup, and K : 
[0,+oo[ —• L(D(A),X) is a Laplace transformable function. $ G 
L(Y,X), where F is a Banach space. Other assumptions are made 
in order that a spectrum determining condition holds and that the 
theory developed in [2] is applicable. 

Roughly speaking, the "resolvent set" in integrodifferential equations 
of this kind is the set of all Ào G C such that the function À —» 
(À — A — If (À)) -1 either is well defined or has an analytic extension at 
Ào (K is the Laplace transform of the function K). Its complementary 
set a is the "spectrum" for problem (0.1). 

If sup{ReA : À G er} < 0, then the free system (with / = 0) 
is exponentially stable: all the solutions decay exponentially to 0 as 
t —• -hoo. If sup {Re A : A G ( j } > 0 , we consider the following problem: 
find conditions on $ ensuring that, for each initial value ^o, there exists 
/ such that the solution u of (0.1) converges asymptotically to zero 
(preferably exponentially, and in the graph norm of 4̂) as t —• +oo. 
If this happens, system (0.1) is said to be stabilizable. We are also 
interested in the exponential decay of Cu, where the "observation 
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