SPECTRAL APPROXIMATIONS FOR WIENER-HOPF OPERATORS

P.M. ANSELONE AND I.H. SLOAN

ABSTRACT. The main purpose of this paper is to compare spectral properties of a Wiener-Hopf operator

$$Kf(s) = \int_0^\infty \kappa(s-t)f(t)\,dt$$

and corresponding finite-section operators

$$K_eta f(s) = \int_0^eta \kappa(s-t) f(t) \, dt,$$

where $\kappa \in L^1(R)$ and f is bounded and continuous. Among other results, we show that any neighborhood of the spectrum of K contains the spectrum of K_β for β sufficiently large. However, the roles of K and K_β cannot be reversed. Examples are given with $\sigma(K)$ a disc and $\sigma(K_\beta) = \{0\}$ for all β . We also compare spectral properties of K_β and corresponding numerical-integral operators $K_{\beta n}$. The spectral properties of K_β and $K_{\beta n}$ match more completely than do the spectral properties of K and K_β .

1. Introduction. Let K be a Wiener-Hopf operator,

$$Kf(s) = \int_0^\infty \kappa(s-t)f(t)\,dt, \ s\in {f R}^+,$$

where $\kappa \in L^1(\mathbf{R})$ and $f \in X^+$, the space of bounded, continuous, complex-valued functions on \mathbf{R}^+ with the uniform norm $||f|| = \sup |f(t)|$. Corresponding finite-section operators K_β are given by

$$K_eta f(s) = \int_0^eta \kappa(s-t) f(t) \, dt, \;\; s \in \mathbf{R}^+, eta \in \mathbf{R}^+.$$

We shall compare spectral properties of K and K_{β} as $\beta \to \infty$. This continues a study of integral equations on the half line initiated in [3] Copyright ©1990 Rocky Mountain Mathematics Consortium