WEAKLY SINGULAR INTEGRAL OPERATORS AS MAPPINGS BETWEEN FUNCTION SPACES

JORGE PUNCHIN

ABSTRACT. Weakly singular integral operators K are investigated as mappings between function spaces of the Hilbert-Sobolev type defined on Riemannian manifolds M_n with boundary ∂M_n . The results obtained from this analysis are applied to the determination of function spaces for which the Fredholm integral equation of the first kind, Ku = f, admits solutions, and conditions on these function spaces are studied for which the boundary value problem Ku = f in $M_n, u = g$ on ∂M_n has meaning.

1. Introduction. Let Ω_n be a bounded and open subset of \mathbf{R}_n , lying on one side of its boundary. The boundary of Ω_n , denoted by $\partial\Omega_n$, will be considered to be an infinitely differentiable manifold of dimension n-1.

Let K be the weakly singular integral operator K defined on the Sobolev space $H^s(\Omega_n), s \in \mathbf{R}$, by

$$(Ku)(x)=\int_{\Omega_n}k(x,y)u(y)dy,$$

where $0 \le \alpha < n$ and $k(x, y) = 1/|x - y|^{\alpha}$.

The main purpose of this paper is to establish properties of weakly singular integral operators K as mappings between function spaces of the Hilbert-Sobolev type, and apply them to the study of the boundary value problem:

(1.1)
$$Ku = f \text{ in } \Omega_n$$

(1.2)
$$u = g \text{ on } \partial \Omega_n.$$

The action of K on certain subspaces H of $H^s(\Omega_n)$ is characterized, and these subspaces are shown to be mapped by K into $H^p(\Omega_n), q < 0$