NUMERICAL SOLUTIONS OF INTEGRAL EQUATIONS ON THE HALF LINE II. THE WIENER-HOPF CASE.

PHILIP M. ANSELONE AND IAN H. SLOAN

ABSTRACT. Numerical approximation schemes of quadrature type are investigated for integral equations of the form

$$x(s) - \int_0^\infty \kappa(s-t)x(t)dt = y(s), \quad 0 \le s < \infty.$$

The principal hypotheses are that κ is integrable, bounded, and uniformly continuous on R, and that x and y are bounded and continuous or, alternatively, bounded and uniformly continuous, on R^+ . The convergence of numerical integration approximations is established, along with error bounds in some cases. The analysis involves the collectively compact operator approximation theory and a variant of that theory in which the role of compact sets is played by bounded uniformly equicontinuous sets of functions on R^+ .

1. Introduction. Consider a Wiener-Hopf integral equation

(1.1)
$$x(s) - \int_0^\infty \kappa(s-t)x(t)dt = y(s), \quad 0 \le s < \infty,$$

where x and y are bounded and continuous on $[0, \infty)$, and κ is bounded, uniformly continuous, and integrable on $(-\infty, \infty)$. For example, $\kappa(u) = e^{-|u|}$ or $\kappa(u) = 1/(1+u^2)$.

Finite-section approximations for (1.1) are given by

$$(1.2) x_{\beta}(s) - \int_{0}^{\beta} \kappa(s-t)x_{\beta}(t)dt = y(s), 0 \le s < \infty,$$

for $\beta \geq 0$. Numerical integration yields discrete approximations $x_{\beta n}$ for x_{β} and hence for x. As an illustration, the rectangular quadrature rule gives

$$(1.3) x_{\beta n}(s) - \frac{1}{n} \sum_{i=1}^{\beta n} \kappa(s - \frac{i}{n}) x_{\beta n}(\frac{i}{n}) = y(s), \quad 0 \le s < \infty,$$