A UNIVERSAL COEFFICIENT THEOREM FOR GAUSS'S LEMMA

WILLIAM MESSING AND VICTOR REINER

To Jürgen Herzog on his 70th birthday

ABSTRACT. We shall prove a version of Gauß's lemma. It works in $\mathbf{Z}[\mathbf{a}, \mathbf{A}, \mathbf{b}, \mathbf{B}]$ where $\mathbf{a} = \{a_i\}_{i=0}^m$, $\mathbf{A} = \{A_i\}_{i=0}^m$, $\mathbf{b} = \{b_i\}_{j=0}^n$, $\mathbf{B} = \{B_j\}_{j=0}^n$, and constructs polynomials $\{c_k\}_{k=0,\ldots,m+n}$ of degree at most $\binom{m+n}{n}$ in each variable set $\mathbf{a}, \mathbf{A}, \mathbf{b}, \mathbf{B}$, with this property: setting

$$\sum_{k} C_k X^k = \sum_{i} A_i X^i \cdot \sum_{j} B_j X^j;$$

for elements a_i, A_i, b_j, B_j in any commutative ring R satisfying

$$1 = \sum_{i} a_i A_i = \sum_{j} b_j B_j,$$

the elements $c_k = c_k(a_i, A_i, b_j, B_j)$ satisfy $1 = \sum_k c_k C_k$.

1. The statement. Let R be a commutative ring. Consider two elements $A(X) = \sum_{i=0}^{m} A_i X^i$ and $B(X) = \sum_{j=0}^{n} B_j X^j$ in R[X], with the product $C(X) = A(X)B(X) = \sum_{k=0}^{m+n} C_k X^k$, so that one has $C_k = \sum_{i+j=k} A_i B_j$. A version of Gauß's lemma, called $Gau\beta$ -Joyal de pauvre in [6, Section II, Lemma 2.6], asserts the following.

Proposition 1. If both A(X), B(X) have the property that their coefficient sequences generate the unit ideal R, then the same is true of their product C(X), that is, $(A_0, \ldots, A_m) = R = (B_0, \ldots, B_n)$ implies $(C_0,\ldots,C_{m+n})=R.$

²⁰¹⁰ AMS Mathematics subject classification. Primary 13P05, 14Q20, 12Y05.

Keywords and phrases. Gauss lemma, constructive.
The second author was partially supported by NSF grant DMS-1001933.
Received by the editors on September 26, 2012, and in revised form on October 23, 2012.

DOI:10.1216/JCA-2013-5-2-299 Copyright ©2013 Rocky Mountain Mathematics Consortium