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To Jürgen Herzog on his 70th birthday

ABSTRACT. We shall prove a version of Gauß’s lemma.
It works in Z[a,A,b,B] where a = {ai}mi=0, A = {Ai}mi=0,
b = {bi}nj=0, B = {Bj}nj=0, and constructs polynomials

{ck}k=0,... ,m+n of degree at most
(
m+n

n

)
in each variable

set a,A,b,B, with this property: setting

∑
k

CkX
k =

∑
i

AiX
i ·
∑
j

BjX
j ;

for elements ai, Ai, bj , Bj in any commutative ring R satisfy-
ing

1 =
∑
i

aiAi =
∑
j

bjBj ,

the elements ck = ck(ai, Ai, bj , Bj) satisfy 1 =
∑

k
ckCk.

1. The statement. Let R be a commutative ring. Consider two
elements A(X) =

∑m
i=0 AiX

i and B(X) =
∑n

j=0 BjX
j in R[X ], with

the product C(X) = A(X)B(X) =
∑m+n

k=0 CkX
k, so that one has

Ck =
∑

i+j=k AiBj . A version of Gauß’s lemma, called Gauß-Joyal
de pauvre in [6, Section II, Lemma 2.6], asserts the following.

Proposition 1. If both A(X), B(X) have the property that their
coefficient sequences generate the unit ideal R, then the same is true of
their product C(X), that is, (A0, . . . , Am) = R = (B0, . . . , Bn) implies
(C0, . . . , Cm+n) = R.
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