ON THE REGULARITY OF CONFIGURATIONS OF F_a-RATIONAL POINTS IN PROJECTIVE SPACE

E. KUNZ AND R. WALDI

Dedicated to Jürgen Herzog on the occasion of his 70th birthday

ABSTRACT. We are interested in the smallest number s = s(n,q) such that, for any given n distinct \mathbf{F}_q -rational points $P_1, \ldots, P_n \in \mathbf{P}^{n-1}$, there exists a hypersurface H of degree s and defined over \mathbf{F}_q such that $P_1, \ldots, P_{n-1} \in H, P_n \notin H$. Alternately, s(n,q) is the maximal Castelnuovo-Mumford regularity of a set of $n \mathbf{F}_q$ -rational points in some projective space. Finally, s(n,q) is the index of stability of certain one-dimensional local Cohen-Macaulay rings.

1. Introduction. Let K be a field and $\mathbf{P}^{k}(K)$ the set of all Krational points in the k-dimensional projective space over K $(k \ge 1)$. We consider subsets $\mathfrak{X} \subset \mathbf{P}^k(K)$ with deg $\mathfrak{X} = |\mathfrak{X}| =: n \ge 1$.

Let $R = K[X_0, \ldots, X_k]$ be the polynomial ring over K in the variables X_0, \ldots, X_k , and let

$$I_{\mathfrak{X}} := (\{F \in R \text{ homogenous } | F(P) = 0 \text{ for all } P \in \mathfrak{X}\})$$

be the homogenous vanishing ideal of \mathfrak{X} . Then $S := R/I_{\mathfrak{X}}$ is a standard graded ring. The Hilbert function $H_{\mathfrak{X}}$ of \mathfrak{X} is defined as

$$H_{\mathfrak{X}}(d) = \dim_K S_d \quad (d \in \mathbf{N}),$$

where S_d is the homogenous component of degree d of S. As is well known, there is a number $r_{\mathfrak{X}}$, such that $H_{\mathfrak{X}}(d) = n$ for $d \geq r_{\mathfrak{X}}$ and $H_{\mathfrak{X}}(r_{\mathfrak{X}}-1) < n$. It is called the *regularity* (Castelnuovo-Mumford regularity) of \mathfrak{X} . For $0 \leq d \leq r_{\mathfrak{X}}$, the function $H_{\mathfrak{X}}$ is strictly increasing; hence, $r_{\mathfrak{F}} < n-1$.

²⁰¹⁰ AMS Mathematics subject classification. Primary 14G15.

Keywords and phrases. Castelnuovo-Mumford regularity, rational points in projective spaces over finite fields, Hilbert function, index of stability. Received by the editors on June 13, 2012, and in revised form on October 31,

^{2012.}

DOI:10.1216/JCA-2013-5-2-269 Copyright ©2013 Rocky Mountain Mathematics Consortium