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Dedicated to Jürgen Herzog on the occasion of his seventieth birthday.

1. Introduction. Throughout the paper, S = k[x1, . . . , xc] is a
polynomial ring over an infinite field k, graded with deg (xi) = 1 for
each i. We consider a graded finitely generated S-module M .

Let A be a subset of the variables {x1, . . . , xc}. Set k[A] = k[xi |
xi ∈ A]. We say that a homogeneous element m ∈ M is A-standard if
the map

k[A] −→ M

1 �−→ m

is a monomorphism. Let m1, . . . ,ms ∈ M and A1, . . . ,As be subsets
of the variables {x1, . . . , xc}. A direct sum of vector spaces

M =
⊕

1≤i≤s

k[Ai]mi

is called a standard decomposition of M if mi is Ai-standard for each
i. We say that the decomposition is nested if the Ai are nested subsets
of {x1, . . . , xc}, that is, for each i, j one of Ai,Aj is contained in the
other. Easy arguments using “prime filtrations” (these are filtrations of
M whose quotients have the form S/P for various prime ideals P ) show
that every module admits a standard decomposition (see [6, Section 1].)

A well-known combinatorial conjecture of Richard Stanley [9, Con-
jecture 5.1] asserts that a multigraded finitely generated module M
of depth d has a standard decomposition as above where the mi are
multihomogeneous elements and every Ai has at least d variables. The
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