STANDARD DECOMPOSITIONS IN GENERIC COORDINATES

DAVID EISENBUD AND IRENA PEEVA

Dedicated to Jürgen Herzog on the occasion of his seventieth birthday.

1. Introduction. Throughout the paper, $S = k[x_1, \ldots, x_c]$ is a polynomial ring over an infinite field k, graded with $\deg(x_i) = 1$ for each i. We consider a graded finitely generated S-module M.

Let \mathcal{A} be a subset of the variables $\{x_1, \ldots, x_c\}$. Set $k[\mathcal{A}] = k[x_i]$ $x_i \in \mathcal{A}$]. We say that a homogeneous element $m \in M$ is \mathcal{A} -standard if the map

$$k[\mathcal{A}] \longrightarrow M$$
$$1 \longmapsto m$$

is a monomorphism. Let $m_1, \ldots, m_s \in M$ and $\mathcal{A}_1, \ldots, \mathcal{A}_s$ be subsets of the variables $\{x_1, \ldots, x_c\}$. A direct sum of vector spaces

$$M = \bigoplus_{1 \le i \le s} k[\mathcal{A}_i] m_i$$

is called a standard decomposition of M if m_i is \mathcal{A}_i -standard for each *i*. We say that the decomposition is *nested* if the \mathcal{A}_i are nested subsets of $\{x_1, \ldots, x_c\}$, that is, for each i, j one of $\mathcal{A}_i, \mathcal{A}_j$ is contained in the other. Easy arguments using "prime filtrations" (these are filtrations of M whose quotients have the form S/P for various prime ideals P) show that every module admits a standard decomposition (see [6, Section 1].)

A well-known combinatorial conjecture of Richard Stanley [9, Conjecture 5.1] asserts that a multigraded finitely generated module Mof depth d has a standard decomposition as above where the m_i are multihomogeneous elements and every \mathcal{A}_i has at least d variables. The

DOI:10.1216/JCA-2013-5-2-171 Copyright ©2013 Rocky Mountain Mathematics Consortium

The first author was partially supported by NSF grant DMS-1001867. The second author was partially supported by NSF grant DMS-1100046. Received by the editors on September 9, 2012, and in revised form on October 22,

²⁰¹²