MULTIPLICITIES ASSOCIATED TO GENERALIZED SYMBOLIC POWERS

STEVEN DALE CUTKOSKY

Dedicated to Juergen Herzog on the occasion of his 70th birthday

1. Introduction. Suppose that R is a Noetherian local ring of dimension d and I, J are ideals in R. Let

$$I_n(J) = I^n : J^{\infty} = \bigcup_{i=1}^{\infty} I^n : J^i,$$

be the "nth symbolic power of I with respect to J."

In the introduction to paper [7] by Herzog, Puthenpurakal and Verma, the following interesting question is raised.

Let s be the limit dimension of family $I_n(J)/I^n$. When does

$$\lim_{n \to \infty} \frac{e_{m_R}(I_n(J)/I^n)}{n^{d-s}}$$

exist?

In this paper we review some results in [7] and give a very general answer to this question, using some recent results from [3, 4].

2. Notation. m_R will denote the maximal ideal of a local ring R. Q(R) will denote the quotient field of a domain R. $\ell_R(N)$ will denote the length of an R-module N. \mathbf{Z}_+ denotes the positive integers and \mathbf{N} the nonnegative integers. Suppose that $x \in \mathbf{R}$. $\lceil x \rceil$ is the smallest integer n such that $n \leq x$.

We recall some notation on multiplicity from [10, Chapter VIII, Section 10], [8, Section V-2] and [2, Section 4.6]. Suppose that (R, m_R)

Partially supported by NSF. Received by the editors on July 15, 2012, and in revised form on July 24, 2012. DOI:10.1216/JCA-2013-5-1-93 Copyright ©2013 Rocky Mountain Mathematics Consortium