INFINITARY EQUIVALENCE OF \mathbf{Z}_p -MODULES WITH NICE DECOMPOSITION BASES

RÜDIGER GÖBEL, KATRIN LEISTNER, PETER LOTH AND LUTZ STRÜNGMANN

ABSTRACT. Warfield modules are direct summands of simply presented \mathbf{Z}_p -modules or, alternatively, are \mathbf{Z}_p -modules possessing a nice decomposition basis with simply presented cokernel. They have been classified up to isomorphism by their Ulm-Kaplansky and Warfield invariants. Taking a model theoretic point of view and using infinitary languages we give here a complete model theoretic characterization of a large class of \mathbf{Z}_p -modules having a nice decomposition basis. As a corollary, we obtain the classical classification of countable Warfield modules. This generalizes results by Barwise and Eklof.

Introduction. The classical theorem by Ulm [13] states that two countable abelian p-groups are isomorphic if and only if their numerical invariants, the Ulm-Kaplansky invariants, coincide. For uncountable (abelian) p-groups this theorem is false, however, it was Hill [4] and Walker [14] who proved that it still holds for the class of totally projective groups. In fact, the class of totally projective abelian p-groups is the largest natural class of abelian pgroups such that every member is completely determined by its Ulm-Kaplansky invariants. Passing to general abelian groups it was then Warfield [15] who extended Ulm's theorem to the class of Warfield modules introducing new numerical invariants, the so-called Warfield invariants. Recall that a Warfield module is a direct summand of a simply presented \mathbf{Z}_p -module, where \mathbf{Z}_p is the ring of integers localized at the prime p. Taking a completely different point of view, it was Szmielew [12] who first considered abelian groups model-theoretically. The usual axioms for abelian groups can be stated in the lower predicate

²⁰¹⁰ AMS *Mathematics subject classification*. Primary 03C52, 03C60, 13C05, Secondary 03E10, 20K21, 20K25, 20K35.

The collaboration was supported by the project No. I-963-98.6/2007 of the German-Israeli Foundation for Scientific Research & Development and by the project STR 627/6 of the German Research Foundation DFG.

 $[\]dot{}$ Řeceived by the editors on August 30, 2009, and in revised form on March 25, 2010.