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THE AUSLANDER-BRIDGER FORMULA
AND THE GORENSTEIN PROPERTY

FOR COHERENT RINGS

LIVIA HUMMEL AND THOMAS MARLEY

ABSTRACT. The concept of Gorenstein dimension, de-
fined by Auslander and Bridger for finitely generated modules
over a Noetherian ring, is studied in the context of finitely
presented modules over a coherent ring. A generalization of
the Auslander-Bridger formula is established and is used as a
cornerstone in the development of a theory of coherent Goren-
stein rings.

1. Introduction. In addressing a problem posed by Glaz ([11,
12]), Hamilton and the second author give a definition of Cohen-
Macaulay for commutative rings which agrees with the usual notion
for Noetherian rings with the property that every coherent regular ring
is Cohen-Macaulay [13]. (A quasi-local ring is defined to be regular if
every finitely generated ideal has finite projective dimension.) A natu-
ral question is whether there is a reasonable concept of Gorenstein for
commutative rings such that every coherent regular ring is Gorenstein
and every coherent Gorenstein ring is Cohen-Macaulay. In this paper,
we develop such a theory of coherent Gorenstein rings which mirrors
much of the theory in the Noetherian case. Central to this development
is the concept of Gorenstein dimension (G-dimension, for short), first
introduced in the context of finitely generated modules over Noethe-
rian rings by Auslander and Bridger [1]. In particular, we prove the
following generalization of the Auslander-Bridger formula for coherent
rings using a notion of depth for arbitrary quasi-local rings developed
by Barger [2], Hochster [14], and Northcott [18]:

Theorem 1.1. Let R be a quasi-local coherent ring and M a finitely
presented R-module of finite G-dimension. Then

depthM + GdimR M = depth R.
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