On a Theorem of Lueroth

By
Jun-ichi IGUSA

(Received March 30, 1951)
Let K be a field of degree of transcendency 1 over a field $\stackrel{k}{k}$, then the well-known theorem of Lüroth ${ }^{1)}$ asserts that K is a simple extension of k, when K is contained in such a field. Now we shall present three different proofs for a generalization of this theorem which are connected closely by the general theory of Picard varieties ${ }^{2}$. The present author interests more in the different methods of proof rather than the result itself, which can be stated as follows:

Let K be a field of degree of transcendency 1 over a field k, then K is a simple extension of k, whenever K is contained in a purely transcendental extension of k.
We assume thereby that k is a perfect field in order to assure the existence of a non-singular model for K over k; although the theorem is true for an arbitary field k, as we can see from another aspect.

Now let $(t)=\left(t_{1}, \ldots, t_{n}\right)$ be a set of independent variables over k, then since K is an intermediary field of $k(t)$ and k, it can be generated over k by a finite set of quantities. Since we have assumed k as a perfect field, there exists a complete non-singular Curve \boldsymbol{C} with a generic Point \boldsymbol{P} over k such that

$$
K=k(\boldsymbol{P})
$$

[^0]
[^0]: I was asked in a certain occasion to generalize Lüroth's theorem from Prof. Akizuki; and the publication of this note has been advised also by him. In this note we shall stick in results and terminologies to Weil's book: Foundations of algebraic geometry, Am. Math. Soc. Colloq., vol. 29 (1946).

 1) Beweis eines Satzes über rationale Curven, Math. Ann. 9 (1876). See also B. L. v. d. Waerden, Moderne Algebra, § 63.
 2) The first two proofs A and B concern clearly with this theory; the same is true for the proof C . See my papers, On the Picard varieties attached to algebraic varieties, to appear in the Amer. J. of Math.; Algebraic correspondences between algebraic varieties, to appear in the Jap. J. ot Math.
