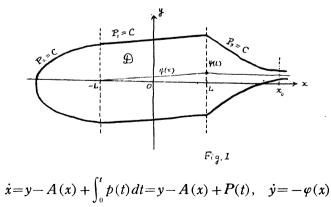
MEMOIRS OF THE COLLEGE OF SCIENCE, UNIVERSITY OF KYOTO, SERIES, A Vol. XXVII, Mathematics No. 2, 1951.

On the Existence of Periodic Solutions of the Non-linear Differential Equation, $\ddot{x}+a(x)\cdot\dot{x}+\varphi(x)=p(t)$

By

Sigeru MIZOHATA and Masaya YAMAGUTI

(Received January 31, 1952)


Many authors have investigated the conditions for the existence of the periodic solutions of the above differential equation; Nagumo¹, Furuya², Cartwright and Littlewood³⁰, Cartwright⁴, and Reuter.⁵ Now we prove it under weaker conditions by a simple method.

Theorem. The given differential equation, where p(t) is periodic of period ω , and $\int_{0}^{\omega} p(t) dt = 0$, possesses at least one periodic solution of period ω , if the following conditions are fulfilled:

a) $A(x) = \int_0^x a(x) dx \to \pm \infty$, for $x \to \pm \infty$ resp. b) $\operatorname{sgn} x \cdot \varphi(x) \ge 0$, for |x| > q

where a(x), $\varphi(x)$, $\varphi'(x)$, p(t) are continuous functions and q is a positive number.

Proof. Put

