MEMOIRS OF THE COLLEGE OF SCIENCE, UNIVERSITY OF KYOTO, SERIES, A Vol. XXVIII, Mathematics No. 1, 1953.

On the Primary Difference of Two Frame Functions in a Riemannian Manifold.

By

Seizi Takizawa

(Received April 15, 1953)

In a previous paper^{*} we have expressed the Stiefel characteristic classes in terms of the forms Π^r and Ω^r . Now, we intend to express the *deformation cochain* of two frame functions by these forms. We make clear the geometrical meaning of the proof of theorem given in the said paper, and we show that Π^r may be regarded as a form which represents the *primary difference*.

We shall use, throughout this paper, the same notations as in the preceding paper.

1. The deformation cochain $d(f_0, h, f_1)$. Let f_0 and f_1 be two cross-sections: $K^r \to \mathfrak{B}^r$ $(1 \le r \le n-1)$, whose obstruction cocycles we denote by $c(f_0)$ and $c(f_1)$ respectively. Since $\pi_i(Y^r) = 0$ for i < r, there exists a homotopy

$$h: f_0|K^{r-1} \cong f_1|K^{r-1}.$$

The interval I is regarded as a cell complex consisting of one 1cell I and the 0-cells 0 and 1. Let $\overline{0}$, $\overline{1}$ be the generators of the group of 0-cochains with integral coefficients; and let \overline{I} denote a generator of the group of 1-cochains chosen so that $\delta \overline{0} = -\overline{I}$, $\delta \overline{1} = \overline{I}$. We may regard naturally $\mathfrak{B}^r \times I$ as a bundle over $K^n \times I$; and a cross-section φ of the part of $\mathfrak{B}^r \times I$ over the *r*-dimensional skeleton of $K^n \times I$, is constructed by

(1)
$$\varphi(x, 0) = (f_0(x), 0), \ \varphi(x, 1) = (f_1(x), 1) \text{ for } x \in K^r, \\ \varphi(x, t) = (h(x, t), t) \text{ for } x \in K^{r-1}, t \in I.$$

Then an obstruction cocycle $c(\varphi)$ is defined. If we set

(2)
$$d(f_0, h, f_1) \times \overline{I} = (-1)^{r+1} \{ c(\varphi) - c(f_0) \times \overline{0} - c(f_1) \times \overline{1} \},$$

the (r+1)-cochain $d(f_0, h, f_1) \times \overline{I}$ of $K^n \times I$ with coefficients in π_r is

^{*)} On the Stiefel characteristic classes of a Riemannian manifold, these Memoirs, this number. We shall quote the paper as "[1]".