On a two-dimensional projectively connected space in the wide sense with torsion

By

Yûzô Gotô
(Received April 15, 1954)
§ 1. Consider a two-dimensiona! space $\boldsymbol{R}_{\mathbf{z}}$ whose moving point is designed by parameters u and v. Suppose that a curve \boldsymbol{C} drawn on \boldsymbol{R}_{2} is developed on a curve $\boldsymbol{\Gamma}$ of a three-dimensional projective space \boldsymbol{S}_{3} by means of the projective connexion $\Gamma_{\alpha r}{ }^{\beta}(\alpha, \beta=0,1,2,3$; $\boldsymbol{r}=1,2)$, the moving frame of reference $\left[\boldsymbol{A}_{\boldsymbol{A}_{1}} \boldsymbol{A}_{2} \boldsymbol{A}_{3}\right]$ along to I^{\prime} being defined by

$$
\begin{gather*}
d A_{\alpha}=I_{\alpha,}^{3} d u^{r} A_{3}, \\
\binom{A_{0} \equiv A ; \quad u^{1}=u, \quad u u^{2}=v}{\alpha, \beta=0,1,2,3 ; \quad r=1,2} .
\end{gather*}
$$

We shall denote hereafter by α, β, \cdots the suffixes which take the values $0,1,2,3$; by $a, b, \cdots i, j, \cdots \gamma, s, \cdots$ those which take the values 1,2 , except for $\S 2$.

We use the following notations :

$$
\begin{gather*}
H_{r s}=\frac{1}{2}\left(I_{r s}^{3}+\Gamma_{s r}^{3}\right), \\
H=\operatorname{det}\left|H_{r s}\right|,
\end{gather*}
$$

$$
H_{r s t}=\frac{1}{3}\left(\Delta_{r} H_{s t}+\Delta_{s} H_{t r}+\Delta_{t} H_{r s}\right)
$$

where

$$
\begin{gather*}
J_{t} H_{r s}=\frac{\partial H_{r s}}{\partial u^{t}}-\Gamma_{r t}^{a} H_{a s}-I_{s t}^{a} H_{r a} \\
H_{r}=\frac{1}{4} H_{r s t} H^{s t}
\end{gather*}
$$

where $H^{s t}$ is the normalized cofactor of the element $H_{t s}$ in H,

$$
K_{r s t}=H_{r s t}-H_{r} H_{s t}-H_{s} H_{t r}-H_{t} H_{r s}
$$

Let $R_{a, s}^{\beta}$ be the curvature tensor relative to the connexion $\Gamma_{q r}{ }^{\beta}$, that is

