MEMOIRS OF THE COLLEGE OF SCIENCE, UNIVERSITY OF KYOTO, SERIES A Vol. XXVIII, Mathematics No. 3, 1954.

On a two-dimensional projectively connected space in the wide sense with torsion

By

Yûzô Gotô

(Received April 15, 1954)

§ 1. Consider a two-dimensional space R_2 whose moving point is designed by parameters u and v. Suppose that a curve C drawn on R_2 is developed on a curve Γ of a three-dimensional projective space S_3 by means of the projective connexion $\Gamma_{\alpha r}^{A}$ (α , $\beta=0, 1, 2, 3$; r=1, 2), the moving frame of reference $[AA_1A_2A_3]$ along to Γ being defined by

(1.1)
$$dA_{\alpha} = \Gamma_{\alpha}^{3} du^{r} A_{3}, \\ \begin{pmatrix} A_{0} \equiv A; & u^{1} = u, & u^{2} = v \\ \alpha, & \beta = 0, 1, 2, 3; & r = 1, 2 \end{pmatrix}$$

We shall denote hereafter by α , β , \cdots the suffixes which take the values 0, 1, 2, 3; by *a*, *b*, \cdots *i*, *j*, \cdots *r*, *s*, \cdots those which take the values 1, 2, except for § 2.

We use the following notations:

(1.2)
$$H_{rs} = \frac{1}{2} (\Gamma_{rs}^{3} + \Gamma_{sr}^{3}),$$

$$(1\cdot 3) H = det |H_{rs}|,$$

(1.4)
$$H_{rst} = \frac{1}{3} (\Delta_r H_{st} + \Delta_s H_{tr} + \Delta_t H_{rs}),$$

where

$$J_t H_{rs} = \frac{\partial H_{rs}}{\partial u^t} - l_{rt}^{\prime a} H_{as} - l_{st}^{\prime a} H_{ra},$$

$$(1\cdot 5) H_r = \frac{1}{4} H_{rst} H^{st},$$

where H^{st} is the normalized cofactor of the element H_{ts} in H,

$$(1\cdot 6) K_{rst} = H_{rst} - H_r H_{st} - H_s H_{tr} - H_t H_{rs}.$$

Let R_{avs}^{β} be the curvature tensor relative to the connexion Γ_{gr}^{β} , that is