MEMOIRS OF THE COLLEGE OF SCIENCE, UNIVERSITY OF KYOTO, SERIES A Vol. XXIX, Mathematics No. 1, 1955.

On cyclic points of group-spaces

By

Nobuo Horie

(Received Nov. 6 1954)

In the group-space S of a continuous group G_r of transformations, we have considered two kinds of repères $\Re(a)$ and $\overline{\Re}(a)$ at every point a in one of the previous papers [1]. Though they can be chosen so that they coincide at the origin a_0 , they do not coincide at other points in general. Moreover, let C_a be a path through a point a in S. Through another point b there exist two paths $C_b^{(+)}$ and $C_b^{(-)}$ which are (+)-parallel and (-)-parallel to C_a respectively. These paths are also not coincident in general except the case when G_r is abelian. In this paper we define that a point b is a cyclic point with respect to a point a when $C_{b}^{(+)}$ and $C_{b}^{(-)}$ are coincident with one another not only as curves but also pointwisely. We shall show that a necessary and sufficient condition for the existence of such cyclic points is that the relative position between the two kinds of repères at a point is coincident with the one at another certain point. The notations in the previous papers ([1], [2]) will be used also here.

1. In the group-space S of a continuous group G_r of transformations with r parameters a^{α} 's, let a be a point whose coordinates are (a^1, \dots, a^r) and T_a a transformation of G_r with parameters $a^{\alpha}(a^1, \dots, a^r)$. We denote by a_0 the point which represents the identical transformation G_r . When a point a is transformed to b by the transformation of the first parameter group $\bigotimes_r^{(+)}$ of G_r with certain constant parameters $p^{\alpha}(p^1, \dots, p^r)$, we have

$$(1 \cdot 1) T_b = T_p T_a$$

Similarly, if b' is a point transformed from a' by the same transformation, we have

 $(1\cdot 2) T_{\nu} = T_p T_{a'}$