The influence of small values of a holomorphic function on its maximum modulus

By

D. C. Rung*

(Communicated by Professor Kusunoki, November 11, 1968)

1. Introduction

In a recent paper [5] we investigated the possible growth of the maximum modulus of a holomorphic function f defined in the unit disk D if the function tended to zero on certain sequences of Jordan arcs $\{r_n\}$ in D. These sequences were distinguished by having

(1.0)
i)
$$\frac{1}{2} \leq r_n = \min_{z \in \gamma_n} |z| \to 1, n \to \infty;$$

ii) $0 < \lim_{n \to \infty} HD(\gamma_n) \leq \overline{\lim_{n \to \infty}} HD(\gamma_n) < \infty;$

where $HD(\gamma_n) = \sup \rho(a, b)$, $a, b \in \gamma_n$, $\rho(a, b)$ denoting the hyperbolic distance between a and b. Such a sequence satisfying (1, 0) is labeled a *PHD* sequence. If

$$R_n = \max |z|, z \in \gamma_n, n = 1, 2, \cdots,$$

then the closed circular sector of $|z| \leq R_n$ of minimum angle α_n containing γ_n is denoted by E_n . So E_n is of the form

$$0 \leq |z| \leq R_n, \ \theta_n \leq \arg z \leq \theta_n + \alpha_n.$$

For convenience we suppose $0 \le \alpha_n \le \pi$, all *n*. For a *PHD* sequence

^{*} This research was conducted while the author was on sabbatical leave from the Pennsylvania State University, U. S. A. as a Fulbright-Hays lecturer in mathematics at The National Tsing Hua University, Hsinchu, Taiwan, China.