Mixed problems for hyperbolic equations II

Existence Theorems with Zero Initial Datas and Energy Inequalities with Initial Datas.

By

Reiko Sакамото

(Communicated by Prof. Mizohata, March 31, 1970)

§0. Introduction

This paper has two aims. One of them is to obtain existence theorems for hyperbolic mixed problems in a quadrant :

$$(P_0) \begin{cases} Au = f & \text{in } t > 0, \ x > 0, \ y \in \mathbb{R}^{n-1}, \\ B_j u = g_j & (j = 1, 2, \dots, \mu) & \text{on } x = 0, \ t > 0, \ y \in \mathbb{R}^{n-1}, \\ D_j^{-1} u = 0 & (j = 0, 1, \dots, m-1) & \text{on } t = 0, \ x > 0, \ y \in \mathbb{R}^{n-1}. \end{cases}$$

The other is to obtain energy inequalities for

$$(P) \begin{cases} Au = f & \text{in } t > 0, \ x > 0, \ y \in R^{n-1}, \\ B_j u = g_j & (j = 1, 2, \dots, \mu) & \text{on } x = 0, \ t > 0, \ y \in R^{n-1}, \\ D_i^j u = u_j & (j = 0, 1, \dots, m-1) & \text{on } t = 0, \ x > 0, \ y \in R^{n-1}. \end{cases}$$

The assumption (A) stated in part I is also assumed throughout in this paper.

Our main results are as follows:

Theorem 1. There exists a positive number γ_0 as follows. Let $f \in \mathcal{H}_{0,\gamma}((0,\infty) \times R^n)$, $g_j \in \mathcal{H}_{m-1-r_j,\gamma}((0,\infty) \times R^{n-1})$ ($\gamma \ge \gamma_0$) be given, then there exists a unique solution u of (P_0) , which belongs to $\mathcal{H}_{m-1,\gamma}((0,\infty) \times R)$.

Theorem 2. There exist positive numbers C and γ_0 , such that it holds for $\gamma \ge \gamma_0$

$$\gamma \| u \|_{\mathbf{m}^{-1},\mathbf{\gamma},+}^{2} + \sum_{j=0}^{m-1} \langle D_{x}^{j} u \rangle_{\mathbf{m}^{-1-j},\mathbf{\gamma},+}^{2} \\ \leq C \left\{ \frac{1}{\gamma_{+}} \| f \|_{0,\mathbf{\gamma},+}^{2} + \sum_{j=0}^{\mu} \langle g_{j} \rangle_{\mathbf{m}^{-1-r}j,\mathbf{\gamma},+}^{2} + \sum_{j=0}^{m-1} [u_{j}]_{\mathbf{m}^{-1-j},\mathbf{\gamma}}^{2} \right\}$$