On potential densities of one-dimensional Lévy processes

By

Toshio ΤΑΚΑDA

(Communicated by Professor Yoshizawa, Sept. 19, 1973)

§1. Introduction

In this paper, we will study some behaviors near the origin of the derivatives of potential densities of some typical one-dimensional Lévy processes.

In the study of one-dimensional Lévy processes, their potential densities play an important role. For example, there is a close relation between the hitting probability for a single point and properties of potential densities: roughly, we can say that the positivity of hitting probability for a single point is equivalent to the existence of a bounded potential density and the regularity of a single point is equivalent to the existence of a bounded continuous density. These facts were well known and used in the study of stable processes (cf. Kac [3]) and have been established for general one-dimensional Lévy processes by Kesten [4] and Bretagnolle [1]. We note that Port and Stone [6] proved independently the existence of continuous densities (and hence, the regularity of a single point) for asymmetric Cauchy processes.

Even in the case when a continuous potential density exists, its derivative behaves quite differently and it is our purpose of the present paper to study the behavior of derivatives near the origin for several one-dimensional Lévy processes. The behavior of derivatives reflects some aspects of the hitting of sample paths to a given point as is explained in Ikeda and Watanabe [2].