Dependence of local homeomorphisms and local C^r-structures

By

Shuzo IZUMI

(Received July 30, 1973)

Introduction

Let $\Sigma(X)$ be the set of all C^r-structures on a topological manifold X. The study of the diffeomorphism classes of $\Sigma(X)$ has been an important subject in differential topology. We, however, consider $\Sigma(X)$ itself paying attention to its dependence relation (\subset) defined below. We give some results which are chiefly reduced to a local theory of homeomorphisms of **R**ⁿ. We begin by the following problems.

Problem I G. For given C^r-structures \mathscr{D} , $\mathscr{D}' \in \Sigma(X)$, can we find a third $\mathscr{D}'' \in \Sigma(X)$ such that $\mathscr{D} \subset \mathscr{D}''$, $\mathscr{D}' \subset \mathscr{D}''$?

Problem II G. For given C^r-structures $\mathscr{D}, \mathscr{D}' \in \Sigma(X)$, can we find a third $\mathscr{D}'' \in \Sigma(X)$ such that $\mathscr{D}'' \subset \mathscr{D}, \mathscr{D}'' \subset \mathscr{D}'$?

These problems are quite raw and more suitable presentations will be found according to the stages of our study. First, we localize the problems.

By a local C^r-structures on \mathbb{R}^n we mean the germ at 0 of a C^rstructure of a neighbourhood of $0 \in \mathbb{R}^n$ (we shall give a more detailed definition in Section 1). By a local homeomorphism⁽¹⁾ of \mathbb{R}^n we mean the germ at 0 of that homeomorphism between neighbourhoods of 0

⁽¹⁾ We use this term following Sternberg, who investigated local homeomorphisms in connection with the theory of flow and found normal forms of conjugate classes of local diffeomorphisms.