J. Math. Kyoto Univ. (JMKYAZ) 15-2 (1975) 397-400

Note on Krull domains

by

Jun-ichi NISHIMURA

(Received June 25, 1974)

In this note we first generalize the theorem of Y. Mori ([6], Theorem 4, p. 27, see Corollary 1) and then we use the result to prove some well-known theorems on integral closure of a noetherian integral domain (see Corollaries 2, 3, 4). In this article, we mean by a ring a commutative ring with identity and when \mathfrak{p} is a prime ideal of a ring R, we denote by $\kappa(\mathfrak{p})$ the field of quotients of R/\mathfrak{p} .

We express our hearty thanks to Professor M. Nagata for his valuable suggestions.

Theorem. Let R be a Krull domain. If, for any prime ideal \mathfrak{p} of height one, R/\mathfrak{p} is noetherian, then R is noetherian.

Proof. Let a be an ideal $\neq (0)$. Let $0 \neq f \in \mathfrak{a}$. Then $(f) = \bigcap_{i=1}^{n} \mathfrak{p}_i^{(e_i)}$ with symbolic powers $\mathfrak{p}_i^{(e_i)}$ of prime ideals of height one. Therefore it is sufficient to prove the following lemma.

Lemma. Let R be a Krull domain with field of quotients K. Let \mathfrak{p} be a prime ideal of height one. If R/\mathfrak{p} is noetherian, then for any natural number e, $R/\mathfrak{p}^{(e)}$ is noetherian.

Proof. By the approximation theorem for Krull domain ([1], § 1, no. 5, Proposition 9, [3], Theorem 5. 8) we can find an element x of K such that $\nu_{\mathfrak{p}}(x) = 1$ and $\nu_{\mathfrak{q}}(x) \leq 0$ for any prime ideal $\mathfrak{q}(\neq \mathfrak{p})$ of height one. Consider the natural injection of R to R[x]. Then we get a natural isomorphism of R/\mathfrak{p} to R[x]/xR[x] (cf. [7], (11.13), (36.5)). By the assumption R[x]/xR[x] is noetherian and therefore, $R[x]/x^e R[x]$ is noetherian by a theorem of Cohen. Now