Asymptotic behaviours of two dimensional autonomous systems with small random perturbations

By

Kunio NISHIOKA

(Communicated by Prof. Watanabe, Nov. 1, 1974)

0. Introduction.

Consider a following linear autonomuos system in R^2 :

(0.1)
$$\frac{dX(t)}{dt} = \mathbf{B} \cdot X(t),$$

where B is a 2×2 constant matrix. If small linear "white noise type" perturbations act on the system $(0 \cdot 1)$, we have a stochastic system:

$$(0\cdot 2) \quad dX^{\varepsilon}(t) = \mathbf{B} \cdot X^{\varepsilon}(t) \, dt + \varepsilon \{\mathbf{C} \cdot X^{\varepsilon}(t) \, dB_1(t) + \mathbf{D} \cdot X^{\varepsilon}(t) \, dB_2(t)\}.$$

where C and D are 2×2 constant matrices and $B_i(t)$ (i=1,2) are independent one dimensional Brownian motions. Our interest is to study relations between properties¹⁰ of the singular point $\{x=0\}$ of the system $(0\cdot 1)$ and of the system $(0\cdot 2)$ for sufficiently small ε .

With respect 'o radial parts, the relations are known, i.e., if the origin is not a center for the system (0.1), then

(0.3)
$$\lim_{\varepsilon \to 0} \lim_{t \to \infty} |X^{\varepsilon}(t)| = \lim_{t \to \infty} |X(t)| \qquad \text{a.s.}$$

but if the origin is a center, then the equality (0.3) is not necessarily valid. Therefore, our purpose in this paper comes to establish such relations between an angular part $\theta(t)$ of X(t) and the other one $\theta^{\epsilon}(t)$ of $X^{\epsilon}(t)$.

¹⁾ Many books, for example, Coddington and Levinson [1], discuss properties of the origin for the system (0.1).