On Reeb components

By

Hideki IMANISHI and Kuniko YAGI

(Received June 10, 1975)

§1. Introduction

Let M be a compact orientable n+1 dimensional manifold and \mathcal{F} a codimension one foliation on M tangent to ∂M of class C^r . (M, \mathcal{F}) is a *Reeb foliation* if all leaves in Int M are homeomorphic to \mathbb{R}^n . A *Reeb component* is a Reeb foliation whose leaves are proper. A Reeb foliation is always transversally orientable.

 (M, \mathscr{F}) is C^r conjugate to (M', \mathscr{F}') if there exists a foliation preserving C^r homeomorphism of M onto M'. (M, \mathscr{F}) is C^r isotopic to (M, \mathscr{F}') if there exists a foliation preserving C^r homeomorphism of M which is C^r isotopic to the identity.

For n=2 Novikov ([8] for Reeb components), Rosenberg, Roussarie and Chatelet ([3], [10], [11] for Reeb foliations) has classified C^2 Reeb foliations by C^0 conjugacy and C^0 isotopy. In [6] it is shown that if (M, \mathcal{F}) is a Reeb foliation of class C^2 then M is homotopy equivalent to T^k (k dimensional torus) and (M, \mathcal{F}) is a Reeb component if and only if k=1.

The purpose of this note is to show that any Reeb component is an "ordinary Reeb component" if *n* is large. Here the ordinary Reeb component $(S^1 \times D^n, \mathscr{F}_R)$ (or $(S^1 \times D^n, \mathscr{F}'_R)$) is defined by $\omega = \Sigma x_i dx_i - \exp(1/(\Sigma x_i^2 - 1)) dt$ where $D^n = \{(x_1, x_2, ..., x_n) | \Sigma x_i^2 \le 1\}$ and *t* is the coordinate of $S^1 = \mathbf{R}/\mathbf{Z}$ (or $\omega' = \Sigma x_i dx_i + \exp(1/(\Sigma x_i^2 - 1)) dt$ respectively). It is easy to see that ω and ω' are completely integrable non-singular one forms on $S^1 \times D^n$ and \mathscr{F}_R and \mathscr{F}'_R are Reeb com-