Simply connected compact simple Lie group $E_{6(-78)}$ of type E_6 and its involutive automorphisms

Dedicated to professor Tatsuji Kudo for his 60th birthday

By

Ichiro YOKOTA

(Communicated by Prof. H. Toda, April 4, 1979)

It is known that there exist five simple Lie groups of type E_6 up to local isomorphism, one of them is compact and the others are non-compact. One of the non-compact Lie groups of type E_6 is obtained by

$$E_{6(-26)} = \{ \alpha \in \operatorname{Iso}_{\mathbf{R}}(\mathfrak{F}, \mathfrak{F}) \mid \det \alpha X = \det X \}$$

where \Im is the exceptional Jordan algebra over the field of real numbers **R** [1]. In this paper, we consider the compact case. The first results are as follows. The simply connected compact simple Lie group of type E_6 is explicitly given by

$$E_6 = \{ \alpha \in \operatorname{Iso}_{\mathfrak{c}}(\mathfrak{F}^{\mathfrak{c}}, \mathfrak{F}^{\mathfrak{c}}) \mid \det \alpha X = \det X, \quad \langle \alpha X, \alpha Y \rangle = \langle X, Y \rangle \}$$

where \mathfrak{F}^{c} is the split exceptional Jordan algebra over the field of complex numbers C and $\langle X, Y \rangle$ the positive definite Hermitian inner product in \mathfrak{F}^{c} . The center $z(E_{6})$ of the group E_{6} is

$$Z_3 = \{1, \omega 1, \omega^2 1\}, \quad \omega \in C, \omega^3 = 1, \omega \neq 1.$$

It is also known that the group E_6 has four involutive automorphisms (up to inner automorphism in the automorphism group of E_6)

au, σ , γ , ho,

and types of the groups corresponding to them are respectively

$$F_4$$
, $D_1 \oplus D_5$, $C_1 \oplus A_5$, C_4 .