On boundedness of families of torsion free sheaves

By
Masaki Maruyama
Dedicated to Professor Y. Nakai on his sixties birthday

(Received July 28, 1980)

Introduction

In [8] Kleiman has developed an effective method of deciding whether a family of coherent sheaves is bounded or not. And then he gave an interesting result on families of invertible sheaves:

Theorem ([8] Theorem 3.13). Let S be a noetherian scheme and X a projective S-scheme with S-ample invertible sheaf $\mathcal{O}_{X}(1)$. Suppose that the geometric fibres of X / S are integral and of dimension n. Then, for a family \mathcal{F} of the classes of invertible sheaves on the fibres of X / S, the following conditions are equivalent:
(i) \mathscr{F} is bounded.
(ii) In the Hilbert polynomial $\chi(L(m))=\sum_{i=0}^{n} a_{i}\binom{m+n-i}{n-i}$ of $L \in \mathscr{F}$, the coefficient a_{1} is bounded and a_{2} is bounded below.
(iii) Whenever L runs over \mathcal{F}, the degree $d\left(c_{1}(L), \mathcal{O}_{X}(1)\right)$ is bounded and $d\left(c_{1}(L)^{2}, \mathcal{O}_{X}(1)\right)$ is bounded below.

On the other hand, thanks to [12] Corollary 5.9.1, the boundedness of semi-stable sheaves is equivalent to the projectivity of moduli spaces of semi-stable sheaves. In [13] the author proposed that the stronger statements $B_{n, r}(\Lambda)$ and $B_{n, r}^{\prime}(\Lambda)$ should be proved and showed that in some special cases they held. Later H. Spindler [16] found that the technique of Barth ([2] and [13] §4) could be generalized for every rank when the characteristic of the base field was zero. And then, as was indicated in [16], it is easy to see that $B_{n, r}^{\prime \prime}(\Lambda)$ is true for all n and r whenever Λ is a field of characteristic zero (see also [5]). However, once one tries to generalize Kleiman's theorem stated in the above, there is no reason for sticking to semi-stable sheaves, much less doing to $B_{n, r}^{\prime \prime}(\Lambda)$.

This article is concerned with a generalization of Kleiman's theorem in the forms which contain $B_{n, r}(\Lambda), B_{n, r}^{\prime}(\Lambda)$ and hence $B_{n, r}^{\prime \prime}(\Lambda)$ as their special

