Invariant β and uniruled threefolds

Dedicated to Yoshikazu Nakai on his sixtieth birthday

Bv

Toshiki Mabuchi*)

(Communicated by Prof. M. Nagata, June 26, 1981)

§ 0. Introduction.

In this paper, introducing a bimeromorphic invariant β , we shall make a systematic study of compact Kähler threefolds with $\kappa=-\infty$: For a compact complex manifold X, we put $\beta(X)=\operatorname{Max}\{\dim Y:Y \text{ is a compact complex manifold with }\kappa(Y)\geq 0$ and there exists a generically surjective meromorphic map $f\colon X\to Y\}$. Then, if $\dim X\leq 4$, one can naturally find a generically surjective meromorphic map $b_X\colon X\to B(X)$ such that $\beta(X)=\dim B(X)$ and that $f\colon X\to Y$ above always factors through B(X), (cf. 1.1.3 and 1.1.4 of § 1). We now assume that X is a compact Kähler threefold. Then there exists a Zariski open dense subset U (resp. U') or B(X) (resp. X) such that:

- (a) $b_{X|U'}: U' \rightarrow b_X(U') = U$ is a proper morphism, and furthermore
- (b) for every $u \in U$, the fibre $b_X^{-1}(u)$ is irreducible and $\beta(b_X^{-1}(u)) = 0$.

Thus, if $\beta(X)=1$ or 2, general fibres of b_X are rational. Therefore, it is naturally expected that problems of β can be translated into those of degenerations of rational curves or surfaces. In fact, via such translations, we shall prove:

- (1) If $\pi: \widetilde{X} \to X$ is a finite étale cover, then $\beta(\widetilde{X}) = \beta(X)$, (cf. Theorem 3.1.1).
- (2) Let $g: Z \to S$ be a proper smooth morphism of Kähler manifolds such that $g^{-1}(s) = X$ for some $s \in S$. Assume that $\beta(X) = 1$ or 2. Then $\beta(g^{-1}(s')) = \beta(X)$ for every $s' \in S$, (cf. Theorem 4.1.1).

Further results we obtained are the following:

- (I) Let X be a compact Kähler uniruled threefold. Then
- (I-a) $\beta(X)=0$ if and only if $q(X)=h^0(X, S^2(\Omega_X^2))=0$, (cf. Theorem 2.1.5);
- (I-b) $\beta(X)=1$ if and only if $q(X)>h^0(X, S^{12}(\Omega_X^2))=0$;
- (I-c) $\beta(X)=2$ if and only if $h^0(X, S^{12}(\Omega_X^2))\neq 0$;
- (I-d) if $\pi: \widetilde{X} \to X$ is a finite étale cover, then π naturally induces an étale cover $b(\pi): B(\widetilde{X}) \to B(X)$ with deg $b(\pi) = \deg \pi$, (cf. Proposition 3.1.4);
- (I-e) if $g: Z \rightarrow S$ is a proper smooth morphism of Kähler manifolds such that

^{*)} Supported by Sakkokai Foundation at Osaka University (Japan), and also by NATO at the University of Montréal (Canada).