On certain hermitian symmetric submanifolds of bounded domains

By

Kazufumi NAKAJIMA

(Received April 12, 1982)

Introduction.

Let M be a Kähler manifold and $p \in M$. In [9], the author and Y. Se-ashi constructed a totally geodesic hermitian symmetric submanifold M(p) of M through p satisfying certain conditions. A bounded domain in C^n is always Kähler manifold with the Bergmann metric. Thus we can apply the above result to D and obtain the hermitian symmetric submanifold D(p) of the non-compact type. The purpose of this paper is to study D(p) for a bounded domain D satisfying the condition (A.1) or $(A.2)_p$. Let $\mathfrak{g}(D)$ be the Lie algebra of $\mathrm{Aut}(D)$ and let $\mathfrak{g}(D)_c$ be its complexification. Then (A.1) implies that $\mathfrak{g}(D)_c$ is "transitive" and $(A.2)_p$ says the existence of an element in the isotropy subalgebra of $\mathfrak{g}(D)_c$ at p which is mapped to the identity transformation of $T_p(D)$ by the isotropy representation. For example, every bounded domain which is equivalent to a tube domain satisfies (A.1) and every bounded domain which is equivalent to a Siegel domain of the second kind satisfies (A.1) and $(A.2)_p$ for each point p. In particular every homogeneous bounded domain also satisfies (A.1) and $(A.2)_p$ for each point p.

Our main results are the followings:

- (a) Assume that a bounded domain D satisfies (A.1). Then for any p, $p' \in D$, D(p) and D(p') are holomorphically isomorphic to each other (Theorem 3.3).
- (b) Assume that a bounded domain D satisfies $(A.2)_p$. Then D(p) is a maximal hermitian symmetric submanifold of D through p in a certain sence (Theorem 4.4).

Let D be a Siegel domain of the second kind. Then D is holomorphically equivalent to a bounded domain. In connection with the study of the non-affine part of $\mathfrak{g}(D)$, the author constructed a symmetric Siegel domain S associated with D and realized D as a Siegel domain of the third kind with the base space S ([6], [7]). We can see that our symmetric space D(p) is nothing but the symmetric Siegel domain S.

Throughout this paper, we shall use the following notations: Aut(D) means the group of all holomorphic transformations of a complex manifold D which is equivalent to a bounded domain and Aut(D) denotes its identity component. For a real vector space or a real Lie algebra W, W_c means its complexification and for $w \in W_c$, \overline{w} denotes