On the syzygy part of Koszul homology on certain ideals

By

Yasuhiro SHIMODA

(Communicated by Prof. Nagata, May 9, 1982, Revised Oct. 14, 1982)

1. Introduction.

Let A be a Noetherian local ring, m the maximal ideal of A and M a finitely generated A-module. a will always denote an ideal in A. Let a_1, \dots, a_r be a set of generators for a. Then we denote by K. (a; M) the Koszul complex associated to a. Furthermore, Z. (a; M) and B. (a; M) denote the cycle and boundary of the Koszul complex respectively. For an arbitrary positive integer n we set

$$\widetilde{H}_n(a; M) = Z_n(a; M) / [Z_n(a; M) \cap aK_n(a; M)]$$

and name this module the syzygy part of the homology $H_n(a; M)$.

The purpose of this paper is to study some properties of the syzygy part. Obviously there exists a canonical homomorphism of A-modules

$$H_n(a; M) \longrightarrow \widetilde{H}_n(a; M) \longrightarrow 0$$
.

If the canonical map is injective for some integer n, then we call that a_1, \dots, a_r is \widetilde{H}_n -faithful (cf. [5]). A sequence of elements a_1, \dots, a_r is called a *d*-sequence for M if

$$(a_1, \dots, a_{i-1})M: a_i a_j = (a_1, \dots, a_{i-1})M: a_j$$

for every $1 \le i \le j \le r$ and an unconditioned *d*-sequence for *M* if any permutation of a_1, \dots, a_r is a *d*-sequence for *M* (C. Huneke has defined a *d*-sequence for M=A in [2]).

A. Simis and W.V. Vasconcelos [6] has defined $\delta(a) = [Z_1(a) \cap a A^r]/B_1(a)$ for arbitrary ideal *a* generated by *r* elements and shown that $\delta(a)=0$ if and only if the canonical homomorphism $\operatorname{Symm}(a) \to R(a)$ from the symmetric algebra to the Rees algebra is the isomorphism in degree two part of both algebras.

On the other hand, C. Huneke has discussed in [2] that if a_1, \dots, a_r is an unconditioned *d*-sequence for *A*, then $\text{Symm}((a_1, \dots, a_r)) \cong R((a_1, \dots, a_r))$ (see also [3]). Thus we can immediately see that if a_1, \dots, a_r is an unconditioned *d*-sequence for *A*, then it is \tilde{H}_1 -faithful.

Our first result is

Theorem 1.1. Let a_1, \dots, a_r be an unconditioned d-sevuence for M, then