On the cohomology mod 2 of E_8

By

Akira Kono

(Received 30 September, 1983)

§1. Introduction

Let E_8 be the compact, connected, simply connected, simple Lie group of type E_8 . As is well known that E_8 is a closed 248 dimensional manifold which is rational homotopy equivalent to

$$S^3 \times S^{15} \times S^{23} \times S^{27} \times S^{35} \times S^{39} \times S^{47} \times S^{59}.$$

The mod 2 cohomology ring of E_8 was determined by Araki and Shikata as follows: Theorem (Araki-Shikata [1]). As an algebra over the mod 2 Steenrod algebra

 $H^{*}(\boldsymbol{E}_{8}; \boldsymbol{F}_{2}) = \boldsymbol{F}_{2}[x_{3}, x_{5}, x_{9}, x_{15}]/(x_{3}^{16}, x_{5}^{8}, x_{9}^{4}, x_{15}^{4})$

 $\otimes \Lambda(x_{17}, x_{23}, x_{27}, x_{29}),$

where deg $x_i = i$, $x_5 = Sq^2x_3$, $x_9 = Sq^4x_5$, $x_{17} = Sq^8x_9$, $x_{23} = Sq^8x_{15}$, $x_{27} = Sq^4x_{23}$ and $x_{29} = Sq^2x_{27}$.

They made elaborated calculations of the Bott Samelson K-cycles and so details of the proof is not published. The purpose of this paper is to give a simple proof of the above theorem.

First we determine $H^*(\tilde{E}_8; F_2)$ for $* \le 31$, where \tilde{E}_8 is the 3-connective fibre space of E_8 . Next we prove that dim $H^*(E_8; F_2) \ge 2^{15}$. Finally using the cohomology Serre spectral sequence for the fibering $\tilde{E}_8 \to E_8 \to K(\mathbb{Z}, 3)$, $H^*(E_8; F_2)$ is determined. To prove the above theorem, we use the following well known facts:

Theore 1.1 (Bott [5]). If G is a compact, connected, simply connected Lie group, then $H_*(\Omega G; Z)$ is torsion free.

Theorem 1.2 (Borel-Siebenthal [4]). The group E_8 contains a closed, connected subgroup U of local type A_8 .

Theorem 1.3 (Cartan [7]). The group E_8 contains a closed, connected subgroup V of local type D_8 satisfying

(1) the center of V is of order 2,