Some remarks on meromorphic functions on open Riemann surfaces

Dedicated to Professor Yukio Kusunoki on his sixtieth birthday

By

Yoshikazu SAINOUCHI

Introduction. The generalization of Abel's theorem to open Riemann surfaces in the form analogous to the classical one has been studied by many authors (for recent references, Maitani [4], Sainouchi [6], [7], Watanabe [8]). In this paper, we define a class $\mathscr{M}(\mathscr{M}_0)$ of meromorphic functions on an arbitrary open Riemann surface (for the definition of $\mathscr{M}(\mathscr{M}_0)$, see section 2) and give a necessary and sufficient condition for the existence of a meromorphic function of $\mathscr{M}(\mathscr{M}_0)$ which has the given divisor. It has a similar formulation to classical Abel's theorem, but we do not assume the finiteness of divisor. In the last section, for certain class of Riemann surfaces with a metric condition, we give some sufficient conditions in order that a meromorphic function should belong to the prescribed class.

1. We shall consider an arbitrary open Riemann surface R and denote its genus by g ($0 < g \le +\infty$). Let $\{\Omega_n\}$ (n=1, 2,...) be a canonical exhaution of R, then there exists a canonical homology basis $\{A_i, B_i\}$ (i=1, 2,..., k(n),...) with respect to $\{\Omega_n\}$ such that $\{A_i, B_i\}$ (i=1, 2,..., k(n)) for a canonical homology basis of $\Omega_n \pmod{\partial \Omega_n}$. Let \mathcal{D} be a class of an enumerable number of semiexact holomorphic differentials dw_i (i=1, 2,...) on R such that $\int_{A_j} dw_i = \delta_{ij}$ (Kronecker's δ) and set $\int_{B_j} dw_i = B_{ij} = \xi_{ij} + i\tau_{ij}$ (ξ_{ij}, τ_{ij} ; real). Also a class of the square integrable semiexact holomorphic differentials having the same property as above is denoted by \mathcal{D}_0 . The class \mathcal{D} (\mathcal{D}_0) always exists on an arbitrary open Riemann surface, but does not be determined uniquely for given canonical homology basis.

2. Let \mathscr{M} be a class of meromorphic functions on R such that each function f belonging to \mathscr{M} has the following two properties: (1) there exists an integer n_0 such that for all $n \ (\geq n_0)$

$$\int_{\gamma_n^{(i)}} d\log f = 0 \qquad (i = 1, 2, ..., m_n),$$

where $\gamma_n^{(i)}$ are the components of $\partial \Omega_n$ and do not contain the zeros and poles of f.

Communicated by Prof. Kusunoki Oct. 27, 1984.