Necessary and sufficient conditions for the local solvability of the Mizohata equations

By

Haruki NINOMIYA

§1. Introduction.

As is well known, there exists a suitable $C^{\infty}(\mathbb{R}^2)$ function $f(x_1, x_2)$ such that the Mizohata equation

(1.1)
$$M_n u(x_1, x_2) \equiv \frac{\partial u}{\partial x_1} + i x_1^{2n+1} \frac{\partial u}{\partial x_2} = f(x_1, x_2),$$

where *n* is a non-negative integer, does not have a distribution solution in any neighborhood of the origin. But it seems the necessary and sufficient conditions on $f(x_1, x_2)$ for (1.1) to have a local solution are not yet known except for those of the micro-local solvability (see Sato-Kawai-Kashiwara [6] and Hörmander [2]).

In this article, we are concerned with the necessary and sufficient conditions on $f(x_1, x_2)$ for (1.1) to have a C^1 solution in a neighborhood of the origin.

Definition. We say a function $f(x_1, x_2)$ is the admissible data for the local solvability of (1.1) at the origin when (1.1) has a C^1 solution in a neighborhood of the origin.

Let \mathcal{Q} and \mathcal{J} denote respectively an open neighborhood of the origin in \mathbb{R}^2 and an open interval (-r, r). Throughout this article *m* denotes 2n+2. Now, our main result is stated thus:

Theorem A. Assume that $f(x_1, x_2) \in C^0(\Omega)$ and $\partial_{x_2} f(x_1, x_2)$ is Hölder continuous in Ω . Let $f^{\sharp}(x_1, x_2)$ denote the function defined in Ω by

$$\int_{-x_1}^{x_1} \partial_{x_2} f(t, x_2) dt \; .$$

Then, $f(x_1, x_2)$ is the admissible data for the local solvability of (1.1) at the origin if and only if there exists a positive constant δ such that the function $A_m^{\sharp}f(x_2)$ defined in R^1 by

$$\int_{-\delta}^{\delta} \int_{0}^{\delta} \frac{f^{\sharp}((my_{1})^{1/m}, y_{2})}{y_{1}+i(y_{2}-x_{2})} dy_{1} dy_{2}$$

Communicated by Prof. S. Mizohata May 22 1987