
J . M ath. Kyoto Univ. (JMKYAZ)
31-1 (1991) 71-82

On the structure of infinitesimal automorphisms

of linear Poisson manifolds I

Dedicated to Professor Noboru Tanaka o n  his sixtieth birthday

By

Nobutada NAKANISHI

Introduction

Let M  be a  smooth manifold. A Poisson structure on M  is defined as a Lie
algebra structure {., •} on C (M )  satisfying Leibniz identity. Let x 1 , x 2 . . . . .  x, be
local coordinates o n  M .  T h e n  a s  is  u s u a l [ 6 ] ,  th is  is  e q u a l to  g iv in g  an
antisymmetric contravariant 2-tensor P  on  M  which satisfies Jacobi identity. In
the local coordinates expression, P  satisfies:
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T h e  corresponding L ie  algebra structure on  C ( M )  i s  c a l le d  a Poisson
structure on M.

Next we shall define here a  linear Poisson manifold, which is one of the most
important examples of Poisson manifolds. Let G be a connected Lie group whose
Lie algebra is g. Let g* be the dual space of g. If x 1 , x 2 , . . . ,  x y, is a  basis of g
satisfying
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then from  this bracket operation, we can define the Poisson bracket f• , on
C (g * )  as follows:
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where C (g * )  denotes a n  algebra of C r -function o n  g * . N o te  that each x ,  is
considered as a linear function o n  g * . By this Poisson bracket, C '(g * ) becomes a
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