Filter-regular sequences

and

multiplicity of blow-up rings
of ideals of the principal class

By
Ngô Viêt Trung

1. Introduction

Let R be a graded algebra generated by finitely many elements of degree 1 over a field k and I a homogeneous ideal of R. Recently J. Herzog, B. Ulrich and this author [HTU] computed the multiplicity of the associated graded ring $\operatorname{gr}_{I}(R)$, the Rees algebra $R[I t]$, and the extended Rees algebra $R\left[I t, t^{-1}\right]$ in terms of the degrees of the generators of I when I generated by a d-sequence of R. We had to require that the degrees of the elements of the d-sequence are non-decreasing, and we were able to give an explicit representation of the associated graded rings of these blow-up rings with respect to some refinement of the adic filtration of their maximal graded ideal, from which the multiplicity formulas followed.

In this paper we will compute the multiplicity of $\operatorname{gr}_{I}(R), R[I t]$, and $R[I t$, t^{-1}] when I is a homogeneous ideal of the principal class, that means I is generated exactly by $\mathrm{ht}(I)$ homogeneous elements, where $\mathrm{ht}(I)$ is the height of I. Our main tool will be an extended version of the notion of filter-regular sequences. This notion originated from the theory of generalized CohenMacaulay rings [CST], and it has proven to be useful in many contexts [Br], [SV], [T2]. One can easily show that if the field k is infinite, an assumption which does not cause any problem in computing the multiplicity, then every homogeneous ideal of R can be generated by a homogeneous filter-regular sequence. For the definition and some basic properties of filter-regular sequences we refer to Section 1 of this paper. Unless otherwise specified we will denote by e the multiplicity of a given local ring with respect to the maximal ideal or of a given graded ring with respect to its (uniquely determined) maximal graded ideal.

For the associated graded rings we will use the associative formula for multiplicities to derive in Section 2 the following formula

[^0]
[^0]: Communicated by Prof. K. Ueno, November 22, 1991, Revised October 18, 1992.

