Generating functions and integral representations for the spherical functions on some classical Gelfand pairs

By

Shigeru Watanabe

Introduction

Let F be R, C or H and $a \mapsto \overline{a}$ the usual conjugation in F. We define the following quadratic form in \mathbf{F}^{n+1} .

$$(x, y)_{-} = -\overline{x}_{0}y_{0} + \overline{x}_{1}y_{1} + \cdots + \overline{x}_{n}y_{n}$$

Let $U(1, n; \mathbf{F})$ be the group of the linear transformations g in \mathbf{F}^{n+1} which satisfy $(gx, gy)_{-} = (x, y)_{-}$ for all $x, y \in \mathbf{F}^{n+1}$. We define the group G as follows.

- 1. If $\mathbf{F} = \mathbf{R}$, G is the connected component of the unit element in $U(1, n; \mathbf{R})$, i.e. $G = SO_0(1, n)$.
- 2. If $\mathbf{F} = \mathbf{C}$, G is the group of all the elements $g \in U(1, n; \mathbf{C})$ of determinant one, i.e. G = SU(1, n).
- 3. If $\mathbf{F} = \mathbf{H}$, $G = U(1, n; \mathbf{H})$, i.e. G = Sp(1, n).

Let $B(\mathbf{F}^n)$ be the unit ball in \mathbf{F}^n and $S(\mathbf{F}^n)$ be the unit sphere in \mathbf{F}^n . The group G acts transitively on $B(\mathbf{F}^n)$ and $S(\mathbf{F}^n)$ as follows: for $\xi = {}^{t}(\xi_1, \ldots, \xi_n) \in \mathbf{F}^n$ and $g = (g_{pq})_{0 \le p,q \le n} \in G$, we define

$$\xi' = g\xi$$
,

where $\xi' = {}^{t}(\xi'_1, \ldots, \xi'_n)$, with

$$\xi'_{p} = \left(g_{p0} + \sum_{q=1}^{n} g_{pq}\xi_{q}\right) \left(g_{00} + \sum_{q=1}^{n} g_{0q}\xi_{q}\right)^{-1}, \qquad 1 \le p \le n.$$

Let K be the isotropy group of $O \in B(\mathbf{F}^n)$ in G. Then K is a maximal compact subgroup of G and $G/K \cong B(\mathbf{F}^n)$. Let G = KAN be the corresponding Iwasawa decomposition and M be the centralizer of A in K. Then M is the isotropy group of $e_1 = {}^{t}(1, 0, ..., 0) \in S(\mathbf{F}^n)$ in K and $K/M \cong S(\mathbf{F}^n)$ is the Martin boundary on $G/K \cong B(\mathbf{F}^n)$. Except for the case of real numbers, K/M is not a symmetric space, but it is known that (K, M) is a Gelfand pair, i.e. the convolution algebra of functions on K bi-invariant by M is commutative. As is well known, the spherical functions on K/M play an important role in the harmonic analysis on G/K.

Received November 21, 1992