# Stationary measures for automaton rules 90 and 150 

By<br>Munemi Miyamoto

This is a continuation of [3]. Let $\Omega=\{0,+1\}^{z}$. A transformation $\Lambda: \Omega \rightarrow$ $\Omega$ is defined as follows;

$$
\Lambda x(i)=x(i-1)+x(i+1) \bmod 2,
$$

where $x \in \Omega$ and $i \in Z$. In [3] $\Lambda$ was called one-dimensional life game. According to the classification of one-dimensional automata by Wolfram [5], this is rule 90 . We are interested in the $\Lambda$-invariant measures on $\Omega$. For 0 $\leqq p \leqq 1$, let $\beta_{p}$ be the distribution of the Bernoulli trials with density $p$. It is shown in $[2,3,4]$ that $\beta_{1 / 2}$, the distribution of coin tossing, is $\Lambda$-invariant.

Furthermore, let $M$ be the set of translation-invariant mixing measures on $\Omega$ and let Conv ( $M$ ) be the convex hull of $M$, i.e., the set of convex combinations of measures in $M$. If we replace the adjective "mixing" with "ergodic", we have the set Conv $(E)$ of all translation-invariant measures (the ergodic decomposition theorem). The behaviour of $\Lambda^{n} P$ as $n \rightarrow \infty$ for $P \in \operatorname{Conv}(M)$ is quite different from that for $P \in \operatorname{Conv}(E) \backslash \operatorname{Conv}(M)$. First we see the behaviour for $P \in \operatorname{Conv}(M)$. The following theorem is an improvement of Theorem 3 in [3].

Theorem 1. Assume $P \in \operatorname{Conv}(M)$. Then, $\Lambda^{n} P$ converges as $n \rightarrow \infty$ if and only if $P$ is a convex combination of $\beta_{0,}, \beta_{1 / 2}$ and $\beta_{1}$.

Collorary (Theorem 1 in [3]). Assume $P \in \operatorname{Conv}(M) . P$ is $\Lambda$-in. variant if and only if $P$ is a convex combination of $\beta_{0}$ and $\beta_{1 / 2}$.

Remark that $\Lambda^{n} \beta_{p}$ does not converge as $n \rightarrow \infty$ unless $p=0,1 / 2,1$. But Theorem 4 in [3] says that if $0<p<1$

$$
\lim 1 / N \sum_{n=0}^{N-1} \Lambda^{n} \beta_{p}=\beta_{1 / 2}
$$

It is natural to ask if there are any other $\Lambda$-invariant measures outside Conv ( $M$ ) [1]. The answer is "Yes, there are infinitely many" [4]. Let us show this in more general setting.

Let $n \geqq 3$ be an odd integer. A configuration $x_{n}$ in $\Omega$ is defined as follows;

$$
x_{n}(i)= \begin{cases}0 & \text { if } i=0 \bmod n, \\ 1 & \text { otherwise } .\end{cases}
$$

