Stationary measures for automaton rules 90 and 150

By

Мипеті Міуамото

This is a continuation of [3]. Let $\Omega = \{0, +1\}^{Z}$. A transformation $\Lambda: \Omega \rightarrow \Omega$ is defined as follows;

 $Ax(i) = x(i-1) + x(i+1) \mod 2$,

where $x \in \Omega$ and $i \in Z$. In [3] Λ was called *one-dimensional life game*. According to the classification of one-dimensional automata by Wolfram [5], this is rule 90. We are interested in the Λ -invariant measures on Ω . For $0 \leq p \leq 1$, let β_p be the distribution of the Bernoulli trials with density p. It is shown in [2,3,4] that $\beta_{1/2}$, the distribution of coin tossing, is Λ -invariant.

Furthermore, let M be the set of translation-invariant mixing measures on Ω and let $\operatorname{Conv}(M)$ be the convex hull of M, i.e., the set of convex combinations of measures in M. If we replace the adjective "mixing" with "ergodic", we have the set $\operatorname{Conv}(E)$ of all translation-invariant measures (the ergodic decomposition theorem). The behaviour of $\Lambda^n P$ as $n \to \infty$ for $P \in \operatorname{Conv}(M)$ is quite different from that for $P \in \operatorname{Conv}(E) \setminus \operatorname{Conv}(M)$. First we see the behaviour for $P \in \operatorname{Conv}(M)$. The following theorem is an improvement of Theorem 3 in [3].

Theorem 1. Assume $P \in \text{Conv}(M)$. Then, $\Lambda^n P$ converges as $n \to \infty$ if and only if P is a convex combination of β_0 , $\beta_{1/2}$ and β_1 .

Collorary (Theorem 1 in [3]). Assume $P \in \text{Conv}(M)$. P is Λ -invariant if and only if P is a convex combination of β_0 and $\beta_{1/2}$.

Remark that $\Lambda^n \beta_p$ does not converge as $n \to \infty$ unless p = 0, 1/2, 1. But Theorem 4 in [3] says that if 0

lim
$$1/N \sum_{n=0}^{N-1} \Lambda^n \beta_p = \beta_{1/2}.$$

It is natural to ask if there are any other Λ -invariant measures outside Conv (M) [1]. The answer is "Yes, there are infinitely many" [4]. Let us show this in more general setting.

Let $n \ge 3$ be an odd integer. A configuration x_n in Ω is defined as follows;

 $x_n (i) = \begin{cases} 0 & \text{if } i = 0 \mod n, \\ 1 & \text{otherwise.} \end{cases}$

Received July 7, 1993